Self Studies

Differential Equations Test - 22

Result Self Studies

Differential Equations Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution of $$e^{y}(1+x^{2})\dfrac{dy}{dx}=2x(1+e^{y})$$ is:
    Solution
    $$\Rightarrow \left(\dfrac{e^{y}}{1+e^{y}}\right)dy=\left(\dfrac{2x}{1+x^{2}}\right)dx$$

    Let $$1+x^{2}=t  ;  1+e^{y}=k$$

    $$\Rightarrow 2xdx=dt$$ and $$e^{y}dy=dk$$

    $$\Rightarrow\displaystyle \int {\frac{dk}{k}}=\int {\frac{dt}{t}}$$

    $$\Rightarrow\displaystyle \log\frac{k}{t}=\log C$$

    Where, $$\log C$$ is the constant of integration.
    $$\Rightarrow \dfrac kt = C$$

    $$\Rightarrow \dfrac{(1+e^{y})}{1+x^{2}}=C$$

    Hence, option A.
  • Question 2
    1 / -0
    The solution of $$x\sqrt{1+y^{2}}dx+y\sqrt{1+x^{2}}dy=0$$ is:
    Solution
     $$x\sqrt{1+y^{2}}dx+y\sqrt{1+x^{2}}dy=0$$ 
    let $$t=\sqrt{1+x^{2}}$$           ;$$k=\sqrt{1+y^{2}}$$
    $$\Rightarrow dt=\dfrac{x}{\sqrt{1+x^{2}}}dx$$    ;$$dk=\dfrac{y}{\sqrt{1+y^{2}}}dy$$
    $$\Rightarrow \int dt+\int dk=0$$
    $$\Rightarrow t+k=c$$
    Hence, Option B is correct
  • Question 3
    1 / -0
    I.F. of $$\dfrac { dy }{ dx } =\dfrac { x+y+1 }{ x+1 } $$ is:
    Solution
    $$\dfrac{dy}{dx}=\dfrac{x+y+1}{x+1}$$
    $$\dfrac{dy}{dx}-\dfrac{y}{x+1}=1$$
    $$\Rightarrow\ I.F=e^{\int \dfrac{-1}{x+1}}dx$$
    $$=e^{-log(x+1)}$$
    $$=\ \begin{matrix}1/{x+1}\\ \end{matrix}$$
  • Question 4
    1 / -0
    Equation of the curve whose polar sub tangent $$r^{2}\displaystyle \frac{d\theta}{dr}$$ is constant
    Solution
    Let the constant length of the polar subtangent be $$a$$
    Therefore as given in the question $$\displaystyle { r }^{ 2 }\frac { d\theta  }{ dr } =a$$
    which is the differential equation of the required curve
    To solve, put it into the form 
    $$\displaystyle d\theta =a\left( \frac { 1 }{ { r }^{ 2 } }  \right) dr\Rightarrow \int { d\theta  } =\int { a\left( \frac { 1 }{ { r }^{ 2 } }  \right) dr } $$
    $$\displaystyle \Rightarrow \theta +c=-\frac { a }{ r } \Rightarrow r\left( \theta +c \right) +a=0$$
  • Question 5
    1 / -0
    $$\dfrac{dy}{dx}=e^{-2y},x=5\Rightarrow y=0,$$ then  $$y=3,find\ the\ value\ of\ 2x$$.
    Solution
    $$\displaystyle\Rightarrow \int e^{2y}dy=\int dx +c$$
    $$\Rightarrow \dfrac{e^{2y}}{2}=x+c$$
    $$\Rightarrow e^{2y}=2x+c$$
    put $$(x,y)=(5,0)$$
    $$\Rightarrow 1=10+c$$     $$\Rightarrow c=-9$$
    $$\Rightarrow e^{2y}=2x-9$$
    $$\Rightarrow 2x=e^{2y}+9$$
    $$\Rightarrow$$ $$ for\  y=3$$
    $$2x=e^{6}+9$$
  • Question 6
    1 / -0
    The solution of $$\displaystyle \frac{dy}{dx}=\sqrt{1+x+y+xy}$$ is:
    Solution
    $$\Rightarrow \dfrac{dy}{dx} =\sqrt{1+xy+x+y}=\sqrt{(1+x)(1+y)}$$

    $$\displaystyle\Rightarrow \int \dfrac{dy}{\sqrt{y+1}}=\int \sqrt{x+1}dx+c$$

    $$\Rightarrow 2\sqrt{y+1}=\dfrac{2}{3}(x+1)^{3/2}+c$$

    $$\Rightarrow 3\sqrt{y+1}=(x+1)^{3/2}+c$$
  • Question 7
    1 / -0
    I.F. of $$\frac{dy}{dx}$$ $$+$$ $$y tan x $$$$=x^{2}cos^{2}x$$ is:
    Solution
    $$I.F=e^{\int P(x)dx}=e^{\int \tan xdx}=e^{log\sec x}=\sec x$$
  • Question 8
    1 / -0
    I.F of $$x\displaystyle \frac{dy}{dx}=(2y+2x^{4}+x^{2})$$ is:
    Solution
    $$\cfrac{dy}{dx}-\dfrac{2}{x}y=2x^{3}+x$$
    $$I.F=e^{\int P(x)dx}=e^{-2\int \tfrac{1}{x}dx}=e^{-2\ \log x}=e^{\log\ \frac1{x^{2}}}$$
    $$=\cfrac {1}{x^{2}}$$
  • Question 9
    1 / -0
    The solution of $$cosec^{2}x\dfrac{dy}{dx}=\dfrac{1}{y}$$ is:
    Solution
    $$\Rightarrow ydy=\sin^{2}xdx$$
    $$\int ydy=\int \dfrac{1-\cos 2x}{2}dx+c$$
    $$\Rightarrow \dfrac{y^{2}}{2}=\dfrac{x-\dfrac{\sin 2x}{2}}{2}+c$$
    $$\Rightarrow 2y^{2}=2x-\sin 2x+c$$
    $$\Rightarrow y^{2}=x-\sin x \cos x +c$$
    Hence, option 'A' is correct.
  • Question 10
    1 / -0
    The solution of $$\displaystyle \frac{dy}{dx}=xy+2x-3y-6$$ is:
    Solution
    $$\dfrac{dy}{dx}-y(x-3)+2(x-3)$$
    $$\dfrac{dy}{dx}=(x-3)(y+2)$$
    $$\Rightarrow \int \dfrac{dy}{y+2}=\int (x-3)dx+c_{1}$$
    $$\Rightarrow log(y+2)=\dfrac{x^{2}}{2}-3x+c_{1}$$
    $$\Rightarrow 2log(y+2)=(x-3)^{2}+c[c=c_{1}-9]$$
    $$\Rightarrow (y+2)^{2}=e^{(x-3)^{2}}e^{c}$$
    $$(y+2)^{2}=ce^{(x-3)^{2}}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now