Self Studies

Differential Eq...

TIME LEFT -
  • Question 1
    1 / -0

    Find the solution of  $$\displaystyle \frac{dy}{dx}=\frac{xy+y}{xy+x}$$

  • Question 2
    1 / -0

    $$\displaystyle x\cos ^{2}ydx=y\cos ^{2}x dy$$

  • Question 3
    1 / -0

    Solve the diffrential equation:  $$\displaystyle \log \frac{dy}{dx}=ax+by$$

  • Question 4
    1 / -0

    Find the solution of  $$\displaystyle xy\frac{dy}{dx}=\frac{1+y^{2}}{1+x^{2}}\left ( 1+x+x^{2} \right )$$.

  • Question 5
    1 / -0

    Find the solution of  $$\displaystyle a\left ( x\frac{dy}{dx}+2y \right )=xy\frac{dy}{dx}$$.

  • Question 6
    1 / -0

    Find the solution of  $$\displaystyle \left ( x^{2}-yx^{2} \right )\frac{dy}{dx}+\left ( y^{2}+xy^{2} \right )=0$$

  • Question 7
    1 / -0

    $$y=ae^{-1/x}+b$$ is a solution of $$\displaystyle\frac{dy}{dx}=\frac{y}{x^{2}}$$ when

  • Question 8
    1 / -0

    Solution of the given differential equation $$\displaystyle \left ( 1-x^{2} \right )\frac{dy}{dx}+xy=xy^{2}$$ is

  • Question 9
    1 / -0

    The order of the differential equation whose general solution is given by $$y =(C_1+ C_2 )\, cos\, (x+ C_3 )\, -\, C_4e^{x+c_5}$$ where $$C_1, C_2, C_3, C_4, C_5$$ are arbitrary constants, is:

  • Question 10
    1 / -0

    Find the solution of  $$\displaystyle\frac{dy}{dx}+\sin\left ( \frac{x+y}{2} \right ) =\sin \left ( \frac{x-y}{2} \right )$$.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now