Self Studies

Differential Equations Test - 39

Result Self Studies

Differential Equations Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution of the differential equation $${x}^{2}dy=-2xydx$$ is
    Solution
    $$x^{2}dy=-2xydx$$ 
    $$xdy=-2ydx$$
     $$xdy+2ydx=0$$ 
    $$\displaystyle\int d(xy^{2}) =\int 0$$ 
    $$xy^{2}=C$$
  • Question 2
    1 / -0
    If $$f:R \rightarrow R$$ be a continuous   function such that $$f(x)=\displaystyle \int^{x}_{1}2tf(t)dt$$, then which of the following does not hold(s) good?
  • Question 3
    1 / -0
    Solution of the differential equation $$xdy-ydx=\sqrt {x^{2}+y^{2}}dx$$ is
    Solution
    $$xdy-ydx=\sqrt{x^2+y^2}+x$$
    $$\dfrac{dy}{dx}=\dfrac{\sqrt{x^2-y^2}+y}{x}$$
    $$\Rightarrow F(x,y)=\dfrac{\sqrt{x^2+y^2}+y}{x}$$
    $$F(kx\cdot ky)=\dfrac{\sqrt{k^2x^2+k^2y^2+ky}}{kx}=k^o\cdot F(x, y)$$
    $$y=vx$$ and $$\dfrac{dy}{x}=v+x\dfrac{dy}{dx}$$
    $$v+x\dfrac{dv}{dx}=\dfrac{\sqrt{x^2+v^2x^2}+vx}{x}$$
    $$v+x\dfrac{dv}{dx}=\sqrt{1+v^2}+v$$
    $$\dfrac{xdv}{dx}=\sqrt{1+v^2}$$
    $$\dfrac{dv}{\sqrt{1+v^2}}=\dfrac{dx}{k}$$
    $$log|v+\sqrt{1-v^2})l=log x+log e$$
    $$v=\dfrac{y}{x}$$
    $$log\left(\dfrac{y}{x}\right)+\sqrt{1+y^2/x^2}=log cx$$
    $$log \dfrac{y+\sqrt{x^2+y^2}}{x}=log cx$$
    $$log(y+\sqrt{x^2+y^2})=log cx^2$$
    $$y+\sqrt{x^2+y^2}=cx^2$$.

  • Question 4
    1 / -0
    Solution of the differential equation $$\dfrac{dy}{dx}+y\sec x=\tan x\left(\le x< \dfrac{\pi}{2}\right)$$ is 
    Solution
    $$\dfrac{dy}{dx}+y\sec x=\tan x$$
    $$\dfrac{dy}{dx}+Py=Q$$
    If $$=\displaystyle\int Pdx=e^{\log|\sec x+\tan x|}$$
    $$=\sec x+\tan x$$
    $$Y(IF)=\displaystyle\int(Q\times IF) dx+C$$
    $$Y(\sec x+\tan x)=\displaystyle\int \tan x(\sec x+\tan x)+C$$
    $$Y(\sec x+\tan x)=\displaystyle\int \tan x\sec x+\int \tan^{2}x dx$$
    $$Y(\sec x+\tan x)=\sec x+\displaystyle\int\sec^{2}-1dx+C$$
    $$Y(\sec x+\tan x)=\sec x+\tan x-x+C$$




  • Question 5
    1 / -0
    The solution of the differential equation $$\cfrac{dy}{dx}=1+x+y+xy$$ is
    Solution
    $$\dfrac{dy}{dx}= 1 + x + y + xy = 1 + x + y (1+x)$$
    $$\dfrac{dy}{dx}=(1+x)(1+y)$$
    $$\dfrac{dy}{1+x}= \displaystyle\int (1+x)dx$$
    $$ln(1+y)=x+\dfrac{x^{2}}{2}+C$$

  • Question 6
    1 / -0
    A continuously differentiable function $$\phi(x)$$ in $$(0,\pi)$$ satisfying $$y'=1+{y}^{2},y(0)=0=y(\pi)$$ is
    Solution
    $$\dfrac{dy}{dx}=1+y^{2}$$
    $$\displaystyle \int \frac{dy}{1+y^{2}}=\int dx$$ 
    $$\tan^{-1}y=x+c$$
    at $$x=0;y=0$$
    $$c=0$$
    $$y=\tan x $$
  • Question 7
    1 / -0
    Solution of the differential equation $$(1+x^{2})dy+2xy dx=\cot x dx$$ is
    Solution
    $$(1+x^2)dy+2xydx=\cot xdx$$
    Put in form $$\dfrac{dy}{dx}+PY=Q$$
    $$(1+x)^2dy+2xydx=\cot xdx$$
    dividing both sides by $$(1+x^2)$$
    $$\dfrac{dy}{dx}+\dfrac{2xy}{1x^2}\dfrac{dx}{dx}=\dfrac{\cot x}{(1+x^2)}\dfrac{dx}{dx}$$
    $$\dfrac{dy}{dx}+\left(\dfrac{2x}{1+x^2}\right)y=\dfrac{\cot x}{1+x^2}$$
    Find P and Q
    $$\dfrac{dy}{dx}+PY=Q$$
    $$P=\dfrac{2x}{1+x^2}$$
    $$Q=\dfrac{\cot x}{1+x^2}$$
    If$$=e^{\displaystyle\int \dfrac{2x}{1+x^2}}$$   $$t=1+x^2$$
    If $$=e^{\displaystyle\int \dfrac{dt}{t}}=e^{log t}=t=1+x^2$$
    Solution: $$Y\times IF=\displaystyle\int Q\times IFdx+C$$
    $$Y(1+x^2)=\displaystyle\int \dfrac{\cot x}{1+x^2}\times (1+x^2)dx+c$$
    $$Y(1+x^2)=\displaystyle\int \cot xdx+c$$
    $$Y(1+x^2)=log|\sin x|+c$$
    $$Y=(1+x^2)^{-1}log|\sin x|+c(1+x^2)^{-1}$$.

  • Question 8
    1 / -0
    The solution of the differential equation $$x^3 \dfrac{dy}{dx} + 4x^2 \tan y = e^x \sec y$$ satisfying $$y(1) = 0$$ is 
    Solution
    Given,
    $$x^3\dfrac{dy}{dx}+4x^2tany=e^xsecy$$

    Dividing whole equation by $$x^3secy$$
    $$cosy\dfrac{dy}{dx}+\dfrac{4}{x}siny=\dfrac{e^x}{x^3}$$
    let siny=t
    $$cosydy=dt$$
    Put in above equation
    $$\dfrac{dt}{dx}+\dfrac{4}{x}t=\dfrac{e^x}{x^3}$$
    P=$$\dfrac{4}{x},Q=\dfrac{e^x}{x^3}$$

    I.f.=$$e^{\int P.dx}$$
          =$$e^{\int \dfrac{4}{x}dx}$$

       =$$e^{4logx}$$
        =$$e^{logx^4}$$
        =$$x^4$$
    Complete solution,
    $$t\times x^4=\int x^4\times \dfrac{e^x}{x^3}dx+c$$
    $$t\times x^4=\int xe^xdx+c$$
    $$t\times x^4=xe^x-e^x+c$$
    $$siny\times x^4=xe^x-e^x+c$$
    at x=1,y=0
    $$0=1.e-e+c$$
    c=0
    $$siny \times x^4=e^x(x-1)+0$$
    $$siny=x^{-4}e^x(x-1)$$
  • Question 9
    1 / -0
    The solution of $$\cfrac{dy}{dx}=\cfrac{1+{y}^{2}}{\sec{x}}$$ is
    Solution
    $$\dfrac{dy}{dx} = \dfrac{1+y^{2}}{\sec x}$$
    $$\dfrac{dy}{1+y^{2}} = \dfrac{1+y^{2}}{\sec x}$$
    $$\displaystyle\int \dfrac{dy}{1+y^{2}} = \displaystyle\int \cos x dx$$
    $$\tan^{-1}y= \sin x+c$$

  • Question 10
    1 / -0
    The solution of $$ydx-xdy=0$$ is
    Solution
    $$y\ dx=x\ dy=0$$
    $$y\ dx=x\ dy$$
    $$\displaystyle \int \dfrac {dx}{x} = \displaystyle \int \dfrac {dy}{y}$$
    $$\ln x=\ln y+\ln c$$
    $$\ln \left (\dfrac {x}{y}\right)=\ln c\ \Rightarrow \dfrac {x}{y}=c$$
    $$y=\dfrac {x}{c}=xc'$$
    $$y=xc'$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now