Self Studies

Differential Eq...

TIME LEFT -
  • Question 1
    1 / -0

    The differential equation representing a family of circles touching  the $$y$$-axis at the origin is 

  • Question 2
    1 / -0

    Solution of differential equation $$\dfrac{dy}{dx}-2xy=x$$ is

  • Question 3
    1 / -0

    If $$2x = {y^{\dfrac{1}{5}}} + {y^{\dfrac{{ - 1}}{5}}}{\text{and}}\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + \lambda x\dfrac{{dy}}{{dx}} + {\text{ky}} = 0,\;{\text{then}}\;\lambda  + {\text{K}}$$ is equal to.

  • Question 4
    1 / -0

    The solution of $$y d x - x d y + 3 x ^ { 2 } y ^ { 2 } e ^ { x ^ { 3 } } d x = 0$$

  • Question 5
    1 / -0

    The order of the differential equation of all circles having radius $$r$$ is.

  • Question 6
    1 / -0

    The solution of, $$\dfrac{xdy}{x^2 + y^2} = \left(\dfrac{y}{x^2 + y^2} - 1 \right)dx$$, is given by

  • Question 7
    1 / -0

    The solution of the differential equation $$\operatorname { xdy } \left( y ^ { 2 } e ^ { x y } + e ^ { \tfrac { x } { y } } \right) = y d x \left( e ^ { \frac { x } { y } } - y ^ { 2 } e ^ { x y } \right)$$ is-

  • Question 8
    1 / -0

    The solution of the differential equation $$( x \cot y + \log \cos x ) d y$$ $$+ ( \log \sin y - y \tan x ) d x = 0$$ is:-

  • Question 9
    1 / -0

    The solution of the differential equation $$y ^ { 2 } d y = x ( y d x - x d y ) \text { is } y = y ( x )$$. If $$y ( \sqrt { 3 } e ) = e$$ and $$y \left( x _ { 0 } \right) = 1$$ then $$x_0$$ is

  • Question 10
    1 / -0

    The differential equation whose solution is $$y = Ax^{5} + Bx^{4}$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now