Self Studies

Differential Eq...

TIME LEFT -
  • Question 1
    1 / -0

    Solution of the differential equation: $$\left( 2xcosy+{ y }^{ 2 }cosx \right) dx+\left( 2ysinx-{ x }^{ 2 }siny \right) dy=0$$ is :

  • Question 2
    1 / -0

    Solution of the equation $$\dfrac{{dy}}{{dx}} = 1 + xy + x + y$$ is

  • Question 3
    1 / -0

    The general solution of the differential equation $$\dfrac { dy }{ dx } +y={ x }^{ 3 }$$ is ______.

  • Question 4
    1 / -0

    Solution of differential equation $$ \cfrac {dy} {dx} + x{sin}^{2} y $$= $$sin y  \quad cos y  \quad $$is

  • Question 5
    1 / -0

    If $$\dfrac{dy}{dx}=y+3>0$$ and $$y(0)=2$$ then $$y(\ln{2})$$ is equal to :

  • Question 6
    1 / -0

    The general solution of the differential equation $$e^xdy+(ye^x+2x)dx=0$$ is

  • Question 7
    1 / -0

    The solution of differential equation $$\cos x.\sin y dx+\sin x. \cos ydy=0$$ is 

  • Question 8
    1 / -0

    For the given differential equation find the general solution:

    $$\dfrac { dy }{ dx } +2y=sin x$$

  • Question 9
    1 / -0

    The differential equation of the system of circles touching the $$x$$-axis at origin is  

  • Question 10
    1 / -0

    Let y=y(x) be the solution of the differential equation $$sinx\dfrac { dy }{ dx } +ycosx=4x,x\in (0,\pi )$$. If $$y=\left( \dfrac { \pi  }{ 2 }  \right) =0,then\quad y\left( \dfrac { \pi  }{ 6 }  \right) $$ is equal to :

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now