Self Studies

Differential Equations Test - 44

Result Self Studies

Differential Equations Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solution of differential equation $$\sin y.\dfrac {dy}{dx}+\dfrac {1}{x}\cos y=x^{4}\cos^{2}y$$ is
  • Question 2
    1 / -0
    The general solution of the differential equation $$\dfrac{dy}{dx}=e^{x+y}$$  is : 
    Solution
    $$\dfrac{dy}{dx}=e^{x+y}$$

    $$\dfrac{dy}{dx}=e^x.e^y$$

    $$\dfrac{dy}{e^y}=e^xdx$$

    On integrating both side we get

    $$\displaystyle\int \dfrac{dy}{e^y}=\displaystyle\int e^xdx$$

    $$\Rightarrow -e^{-y}=e^x+c$$

    $$e^{-y}+e^x=c$$.
  • Question 3
    1 / -0
    The value of the constant $$'m'$$ and $$'c'$$ for which $$y=mx+c$$ is a solution of the differential equation $$D^2y-3Dy-4y=-4x$$.
    Solution
    We have,
    $$y=mx+c, \implies \dfrac{dy}{dx}=m, \implies \dfrac{d^{2}y}{dx^{2}}=0$$
    Substituting in 
    $$D^2y-3Dy-4y=-4x$$.
    i.e. $$\dfrac{d^{2}y}{dx^{2}}-3\dfrac{dy}{dx}-4y=-4x$$
    $$0-3m-4(mx+c)=-4x$$
    $$-3m-4c-4mx=-4x$$
    $$4mx+(3m+4c)=4x+0$$
    Comparing coefiiecient of $$x$$ we get, 
    $$4m=4\implies m=1$$
    Comparing constant terms we get 
     $$3m+4c=0\implies 3(1)=-4c\implies c=-3/4$$
  • Question 4
    1 / -0
    The solution of the differential equation $${ 2x }^{ 2 }y\dfrac { dy }{ dx } =tan\left( { x }^{ 2 }{ y }^{ 2 } \right) -{ 2xy }^{ 2 }$$ given $$y(1)=\sqrt { \dfrac { \pi  }{ 2 }  } $$ is
    Solution

  • Question 5
    1 / -0
    The solution of the equation $$(x^2 +xy)dy=(x^2+y^2)dx $$is 
    Solution

    Given: $$(x^2+xy)dy=(x^2+y^2)dx$$
    To find: Solution of the eq
    Now, 
    $$(x^2+xy)dy=(x^2+y^2)dx$$
    divide $$x^2$$ bo both side.
    $$\therefore (1+\dfrac{y}{x})dy=(1+\dfrac{y^2}{x^2})dx$$

    or , $$(1+\dfrac{y}{x})\dfrac{dy}{dx}=(1+\dfrac{y^2}{x^2})$$

    Let, $$\dfrac{y}{x}=v\Rightarrow y=xv$$

    or $$\dfrac{dy}{dx}=v+x\dfrac{dv}{dx}$$

    $$\therefore (1+v)(v+\dfrac{xdv}{dx})=(1+v^2)$$

    or, $$v+x\dfrac{dv}{dx}=\dfrac{1+v^2}{1+v}-v$$

    or, $$x\dfrac{dv}{dx}=\dfrac{1+v^2-v-v^2}{1+v}$$

     or $$x\dfrac{dv}{dx}=\dfrac{1-v}{1+v}$$

    Integrating both side

    $$\therefore \int (\dfrac{1+v}{1-v})dv=\int \dfrac{dx}{x}$$

    or, $$\int (\dfrac{2}{1-v}-1)dv=\int \dfrac{dx}{x}$$

    or $$\int \dfrac{2}{1-v}dv-\int dv=\int \dfrac{dx}{x}$$

    or, $$-2 \log (1-v)-v=\log +c$$

    or $$2\log (1-v)+\log x+v=c$$

    or, $$\log (1-v)^2+\log x+v=c$$

    or $$\log \{x(1-\dfrac{y}{x})^2\}+\dfrac{y}{x}=c$$

    or $$\log \{x(\dfrac{x-y}{x})^2\}=c-\dfrac{y}{x}$$

    or $$(x-y)^2.\dfrac{1}{x}=c.e^{-y/x}$$

    or $$(x-y)^2=xe^{-y/x}.c$$
  • Question 6
    1 / -0
    Solve the given differential equation $$\dfrac{dy}{dx}=(cosx-sinx),$$
    Solution
    Given 

    $$\dfrac {dy}{dx}=\cos x-\sin x$$

    $$ dy=(\cos x-\sin x) dx$$

    Integrating on Both sides

    $$\displaystyle \int dy=\int (\cos x-\sin x) dx$$

    $$y=\displaystyle \int \cos xdx-\int \sin x dx$$

    $$y=\sin x+\cos x +c$$

  • Question 7
    1 / -0
    Which of the following functions is differentiable at x=0?
    Solution

  • Question 8
    1 / -0
    The solution of the differential equation $$x\dfrac{dy}{dx}=y(log y-log x+1)$$ is
    Solution
    $$x\dfrac{dy}{dx}=y\left(\log{y}-\log{x}+1\right)$$

    $$\Rightarrow\,\dfrac{dy}{dx}=\dfrac{y}{x}\left(\log{\dfrac{y}{x}}+1\right)$$

    Put $$y=vx\Rightarrow\,\dfrac{dy}{dx}=v+x\dfrac{dv}{dx}$$

    $$\Rightarrow\,v+x\dfrac{dv}{dx}=v\left(\log{v}+1\right)$$
    $$\Rightarrow\,v+x\dfrac{dv}{dx}=v\log{v}+v$$
    $$\Rightarrow\,x\dfrac{dv}{dx}=v\log{v}$$
    $$\Rightarrow\,\dfrac{dv}{v\log{v}}=\dfrac{dx}{x}$$

    Integrating both sides,

    $$\Rightarrow\,\log{\left(\log{v}\right)}=\log{x}+\log{c}=\log{cx}$$
    $$\Rightarrow\,\log{v}=cx$$
    $$\Rightarrow\,\log{\dfrac{y}{x}}=cx$$
    $$\Rightarrow\,y=x{e}^{cx}$$
  • Question 9
    1 / -0
    If $$\cos { x } \cfrac { dy }{ dx } -y\sin { x } =6x,(0<x<\cfrac { \pi  }{ 2 } )$$ and $$\quad y\left( \cfrac { \pi  }{ 3 }  \right) =0\quad $$ then $$y\left( \cfrac { \pi  }{ 6 }  \right) $$ is equal to:
    Solution
    $$\cfrac { dy }{ dx } -y\tan { x } =6x\sec { x } $$
    $$\quad y\left( \cfrac { \pi  }{ 3 }  \right) =0\quad ;y\left( \cfrac { \pi  }{ 6 }  \right) =7$$
    $${ e }^{ \int { pdx }  }={ e }^{ -\int { \tan { x } dx }  }={ e }^{ \ln { \cos { x }  }  }=\cos { x } $$
    $$y.\cos { x } =\int { 6x\sec { x } \cos { x }  } dx$$
    $$y.\cos { x } =\cfrac { 6{ x }^{ 2 } }{ 2 } +C\quad \quad $$
    $$y=3{ x }^{ 2 }\sec { x } +C\sec { x } $$
    $$0=3.\cfrac { { \pi  }^{ 2 } }{ 9 } .(2)+C(2)$$
    $$2C=\cfrac { -2{ \pi  }^{ 2 } }{ 3 } \Rightarrow C=-\cfrac { 2{ \pi  }^{ 2 } }{ 3 } $$
    $$y(\pi /6)=3.\cfrac { { \pi  }^{ 2 } }{ 36 } .\left( \cfrac { 2 }{ \sqrt { 3 }  }  \right) +\left( \cfrac { 2 }{ \sqrt { 3 }  }  \right) .\left( -\cfrac { { \pi  }^{ 2 } }{ 3 }  \right) \Rightarrow y=-\cfrac { { \pi  }^{ 2 } }{ 2\sqrt { 3 }  } $$
  • Question 10
    1 / -0
    Solution of the differential equation of $${ (y }^{ 2 }-{ x }^{ 3 })dx-xydy=0\quad $$ is
    Solution
    $${ (y }^{ 2 }-{ x }^{ 3 })dx-xydy=0$$
    $$\quad \Rightarrow y(ydx-xdy)={ x }^{ 3 }dx\Rightarrow \cfrac { y }{ x } \left( \cfrac { ydx-xdy }{ { x }^{ 2 } }  \right) =dx\Rightarrow \cfrac { y }{ x } d\left( \cfrac { y }{ x }  \right) =dx\Rightarrow -\cfrac { 1 }{ 2 } { \left( \cfrac { y }{ x }  \right)  }^{ 2 }=x+k$$
    $$\Rightarrow -{ y }^{ 2 }=2{ x }^{ 3 }+2{ x }^{ 2 }k\Rightarrow { y }^{ 2 }+2{ x }^{ 3 }+c{ x }^{ 2 }=0\quad $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now