Self Studies

Calculus Test -...

TIME LEFT -
  • Question 1
    1 / -0

    If \(y+\sin ^{-1}\left(1-x^{2}\right)=e^{x}\), then \(\frac{d y}{d x}=?\) 

  • Question 2
    1 / -0

    For what choice of \(a\) and \(b\) is the function \(f(x)=\left\{\begin{array}{ll}x^2,\quad\quad x \leq c \\ a x+b, \quad x>c\end{array}\right.\) is differentiable at \(x=c\).

  • Question 3
    1 / -0

    If \(y=e^{x+e^{x+e^{x+\cdots \infty}}}\), then \(\frac{d y}{d x}\) is:

  • Question 4
    1 / -0

    If \(f(x)=x^{3}+3 x^{2}+3 x-7\), then find the value of \(\frac{d f(x)}{d x}\) at \(x=2\).

  • Question 5
    1 / -0

    If \(y=3 t^{2}-4 t-3\) and \(x=8 t+5\), find \(\frac{d y}{d x}\) at \(t=6\).

  • Question 6
    1 / -0

    If \(y=\frac{12 \tan x-4 \tan ^{3} x}{9-27 \tan ^{2} x}\), then find \(\frac{d^{2} y}{d x^{2}}\).

  • Question 7
    1 / -0

    What is the value of \(\frac{d y}{d x}\), if \(y^{2}+x^{2}+3 x+5=0\) at \((0,-3)?\)

  • Question 8
    1 / -0

    Let \(f(x)=\log x^{3}+2 x^{2}-3 x+100\), then find \(f'(3)\).

  • Question 9
    1 / -0

    Find the value of the constant \(\lambda\) so that the function given below is continuous at \(x=-1\)

    \(f(x)=\left\{\begin{array}{cc} \frac{x^2-2 x-3}{x+1}, & x \neq-1 \\ \end{array}\right.\)

  • Question 10
    1 / -0

    If \(f(x)= \begin{cases}x^2+3 x+a & , \text { for } x \leq 1 \\ b x+2 & \text {, for } x>1\end{cases}\) is everywhere differentiable, find the values of \(a\) and \(b\).

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now