Self Studies

Calculus Test - 2

Result Self Studies

Calculus Test - 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(f(x)=\left\{\begin{array}{ll}\frac{\sin 3 x}{e^{2 x}-1}, & x \neq 0 \\ k-2, & x=0\end{array}\right.\) is continuous at \(x=0\), then \(k=\)?

    Solution

    Since \(\mathrm{f}(\mathrm{x})\) is given to be continuous at \(\mathrm{x}=0\),

    \(\lim _{\mathrm{x} \rightarrow 0} \mathrm{f}(\mathrm{x})=\mathrm{f}(0)\)

    Also, \(\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)\) because \(f(x)\) is same for \(x>0\) and \(x<0\).

    \(\therefore \lim _{x \rightarrow 0} f(x)=f(0)\)

    We know that:

    \(\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\)

    \(\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1\)

    Therefore,

    \(\Rightarrow \lim _{x \rightarrow 0} \frac{\sin 3 x}{e^{2 x}-1}=k-2\)

    Multiplying and dividing by 3x in numerator and by 2x in denominator, we get:

    \(\Rightarrow \lim _{x \rightarrow 0} \frac{\frac{\sin 3 x}{3 x} \times 3 x}{\frac{e^{2 x}-1}{2 x} \times 2 x}=k-2\)

    \(\Rightarrow \frac{3}{2}=k-2\)

    \(\Rightarrow k=\frac{7}{2}\)

  • Question 2
    1 / -0

    Determine the value of \(k\) for which the following function is continuous at \(x=3\).

    \(f(x)=\left\{\begin{array}{cc} \frac{x^2-9}{x-3}, & x \neq 3 \\ k, & x=3 \end{array}\right.\)

    Solution

    Since \(f(x)\) is continuous at \(x=3\). Therefore,

    \( \lim _{x \rightarrow 3} f(x)=f(3) \)

    \(\Rightarrow \lim _{x \rightarrow 3} f(x)=k\)

    \(\Rightarrow  \lim _{x \rightarrow 3} \frac{x^2-9}{x-3}=k\)

    \(\Rightarrow  \lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{x-3}=k\)

    \(\Rightarrow  \lim _{x \rightarrow 3}(x+3)=k \)

    \(\Rightarrow 6=k\)

    Thus, \(f(x)\) is continuous at \(x=3\), if \(k=6\).

  • Question 3
    1 / -0

    For the function \(f\) given by \(f(x)=x^2-6 x+8\), the value of \(f^{\prime}(5)-3 f^{\prime}(2)\) will be equals to:

    Solution

    \(f(x)\) being a polynomial function, is everywhere differentiable. 

    The derivative of \(f\) at \(x\) is given by

    \( f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \)

    \(\Rightarrow  f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left|(x+h)^2-6(x+h)+8\right|-\left|x^2-6 x+8\right|}{h} \)

    \(\Rightarrow  f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{2 h x-6 h+h^2}{h} \)

    \(\Rightarrow  f^{\prime}(x)=\lim _{h \rightarrow 0}(2 x-6+h) \)

    \(\Rightarrow  f^{\prime}(x)=2 x-6 \)

    \(\therefore  f^{\prime}(5)-3 f^{\prime}(2)=(2 \times 5-6)-3(2 \times 2-6)=4+6=10 \)

    and checking from the options,

    \(f^{\prime}(8)=2 \times 8-6=10 \)

    So, \(f^{\prime}(5)-3 f^{\prime}(2)=f^{\prime}(8) \)

  • Question 4
    1 / -0

    If \(\sqrt{y}=\sin x+\cos x\), then \(\frac{d y}{d x}\) is:

    Solution

    Given: 

    \(\sqrt{y}=\sin x+\cos x\)  

    Squaring both sides, we get:

    \(\Rightarrow y=(\sin x+\cos x)^{2}\)

    \(\Rightarrow y=\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x\)

    \(\Rightarrow y=1+\sin 2 x \quad(\because 2 \sin x \cos x=\sin 2 x)\)

    Differentiating above with respect to x, we get:

    \(\frac{{dy}}{{dx}}=0+2 \times \cos 2 {x}\)

    \(=2 \cos 2 {x}\)

  • Question 5
    1 / -0

    Let \(f(x)=2 x^{3}+\frac{1}{x}\), then \(f'(1)\) is:

    Solution

    Given:

    \(\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}+\frac{1}{\mathrm{x}}\)

    We know that:

    If \(f(x)=x^{n}\), then:

    \(f'(x)=n x^{n-1}\)

    Differentiating with respect to x, we get:

    \(f'(x)=6 x^{2}-\frac{1}{x^{2}}\)

    Putting \(x=1\) in above, we get:

    \(f'(1)=6 \times 1^{2}-\frac{1}{1^{2}}\)

    \(f'(1)=6-1=5\)

    \(\therefore\) The value of \(f^{\prime}(1)\) is 5.

  • Question 6
    1 / -0

    Determine the value of the constant \(k\) so that the function \(f(x)=\left\{\begin{array}{cl} k x^2, & \text { if } x \leq 2 \\ 3, & \text { if } x>2 \end{array}\right.\) is continuous.

    Solution

    When \(x \leq 2\), we have

    \(f(x)=k x^2\), which being a polynomial function is continuous at each \(x<2\).

    When \(x>2\), we have

    \(f(x)=3\), which being a constant function is continuous at each \(x>2\)

    So, consider the point \(x=2\).

    We have,

    \((\) LHL at \(x=2)=\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2} k x^2=4 k\), \(\quad \left[\because f(x)=k a^2\right.\) for \(\left.x \leq 2\right]\)

    \((\) RHL at \(x=2)=\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2} 3=3\), \(\quad [\because f(x)=3\) for \(x>2]\)

    and, \(\quad f(2)=k(2)^2=4 k\).

    As \(f(x)\) is continuous in its domain.

    Therefore, it is also continuous at \(x=2\).

    Consequently,

    \(\lim _{x \rightarrow 2^{-}} f(x)=f(2)=\lim _{x \rightarrow 2^{+}} f(x) \Rightarrow 4 k=3\) 

    \(\Rightarrow k=\frac{3}{4}\)

  • Question 7
    1 / -0

    Find the derivative of \(\frac{1}{3 x^{2}}\) with respect to \(x\).

    Solution

    Let, \(y=\frac{1}{3 x^{2}}\) ....(1)

    We know that:

    \(\frac{d x^{n}}{dx}=nx^{n-1}\)

    Differentiating (1) with respect of x, we get:

    \(\frac{dy}{dx} =\frac{d}{dx}\left(\frac{1}{3 x^{2}}\right)\)

    \(=\frac{1}{3} \frac{d\left(x^{-2}\right)}{dx}\)

    \(=\frac{1}{3} \times-2 \times x^{-2-1}\)

    \(=\frac{-2}{3 x^{3}}\)

  • Question 8
    1 / -0

    If \(f(x)=\frac{\sin \left(e^{x-2}-1\right)}{\log (x-1)}, x \neq 2\) and \(f(x)=k\).Then, the value of k for which f will be continuous at x = 2 is:

    Solution

    Given:

    \(\lim _{x \rightarrow 2} \frac{\sin \left(e^{x-2}-1\right)}{\log (x-1)}\) .....(1)

    We know that:

    \(\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=l=\lim _{x \rightarrow a} f(x)\)

    On substituting, \(\mathrm{h}=\mathrm{x}-2\) in (1), we get:

    \(=\lim _{h \rightarrow 0} \frac{\sin \left(e^{h}-1\right)}{\log (1+h)}\)

    This can be rearranged as:

    \(=\lim _{h \rightarrow 0} \frac{\sin \left(e^{h}-1\right)}{e^{h}-1} \cdot \frac{e^{h}-1}{h} \cdot \frac{h}{\log (1+h)}\)

    \(=1 \cdot 1 \cdot 1\)

    \(=1\)

    And, \(f(2)=k\)

    ∴ For the function to be continuous the value of the function f(x) at x = 2 must equal the limiting value of 1, i.e., k = 1

  • Question 9
    1 / -0

    The derivative of \(\cos ^{-1}\left(\frac{1}{2 x^{2}-1}\right)\) with respect to \(\sqrt{1-x^{2}}\) is:

    Solution

    Let, \(v=\cos ^{-1}\left(\frac{1}{2 x^{2}-1}\right)\) and \(u=\sqrt{1-x^{2}}\)

    Substituting \(x=\cos \theta\), 

    \(\Rightarrow \theta=\cos ^{-1} x\),  we get:

    \(v=\cos^{-1}\left(\frac{1}{2 \cos ^{2} \theta-1}\right)\)

    \(=\cos ^{-1}\left(\frac{1}{\cos ^{2} \theta-\sin ^{2} \theta}\right)\)

    \(=\cos ^{-1}\left(\frac{1}{\cos 2 \theta}\right)\)

    \(=\cos ^{-1}(\sec 2 \theta)\)

    \(=\cos^{-1}\left(\cos \left(90^{\circ}-2 \theta\right)\right)\)

    \(=90^{\circ}-\) \(2 \theta\).

    And, \(u=\sqrt{1-x^{2}}\)

    \(=\sqrt{1-\cos ^{2} \theta}\)

    \(=\sqrt{\sin ^{2} \theta}=\sin \theta\)

    Now, \(\frac{d v}{d \theta}=-2\) 

    And, \(\frac{d u}{d \theta}=\cos \theta\)

    \(\therefore \frac{\mathrm{dv}}{\mathrm{du}} =\frac{\mathrm{dv}}{\mathrm{d} \theta} \times \frac{\mathrm{d} \theta}{\mathrm{d} u}\)

    \(=\frac{-2}{\cos \theta}=\frac{-2}{x}\)

  • Question 10
    1 / -0

    Find \(\frac{\mathrm{dy}}{\mathrm{dx}}\), if \(\mathrm{y}=\tan ^{-1}\left[\frac{8 \mathrm{x}}{1-15 \mathrm{x}^{2}}\right]\).

    Solution

    Given that:

    \(\mathrm{y}=\tan ^{-1}\left[\frac{8 \mathrm{x}}{1-15 \mathrm{x}^{2}}\right]\)

    As we know that,

    \(\tan ^{-1} \mathrm{x}+\tan ^{-1} \mathrm{y}=\tan ^{-1}\left[\frac{x+\mathrm{y}}{1-\mathrm{xy}}\right]\)

    So,

    \(y=\tan ^{-1}\left[\frac{5 x+3 x}{1-5 x \cdot 3 x}\right]\)

    \(=\tan ^{-1} 5 x+\tan ^{-1} x\)

    Also, we know:

    \(\frac{\mathrm{d}\left(\tan ^{-1} \mathrm{x}\right)}{\mathrm{dx}}=\frac{1}{1+\mathrm{x}^{2}}\)

    Differentiating y with respect to x, we get:

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}\left(\tan ^{-1} 5 \mathrm{x}\right)}{\mathrm{dx}}+\frac{\mathrm{d}\left(\tan ^{-1} 3 \mathrm{x}\right)}{\mathrm{dx}}\)

    \(=\frac{5}{1+(5 x)^{2}}+\frac{3}{1+(3 \mathrm{x})^{2}}\)

    \(=\frac{5}{1+25 x^{2}}+\frac{3}{1+9 x^{2}}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now