Self Studies

Calculus Test - 3

Result Self Studies

Calculus Test - 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Evaluate \(\frac{\mathrm{d}}{\mathrm{dx}}\left(\cot ^{-1} \frac{1}{\mathrm{x}}\right)\).

    Solution

    Given:

    \(\frac{\mathrm{d}}{\mathrm{dx}}\left(\cot ^{-1} \frac{1}{x}\right)\)

    \(=\frac{\mathrm{d} \cot ^{-1} \frac{1}{\mathrm{x}}}{\mathrm{d}\left(\frac{1}{x}\right)} \times \frac{\mathrm{d}\left(\frac{1}{x}\right)}{\mathrm{dx}}\)

    We know that:

    \(\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}\)

    \(\frac{d}{d x}\left(\cot ^{-1} x\right)=\frac{-1}{1+x^{2}}\)

    \(\frac{d}{d x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}}\)

    \(=\frac{-1}{1+\left(\frac{1}{x}\right)^{2}} \times \frac{d}{d x}\left(\frac{1}{x}\right)\)

    Therefore,

    \(\frac{\mathrm{d} \cot ^{-1} \frac{1}{\mathrm{x}}}{\mathrm{d}\left(\frac{1}{x}\right)} \times \frac{\mathrm{d}\left(\frac{1}{x}\right)}{\mathrm{dx}}\)

    \(=\frac{-1}{1+\left(\frac{1}{x}\right)^{2}} \times\left(-\frac{1}{x^{2}}\right)\)

    \(=\frac{1}{\frac{x^{2}+1}{x^{2}}} \times\left(\frac{1}{x^{2}}\right)\)

    \(=\frac{x^{2}}{1+x^{2}} \times \frac{1}{x^{2}}\)

    \(=\frac{1}{1+x^{2}}\)

  • Question 2
    1 / -0

    If \(f(2)=4\) and \(f^{\prime}(2)=1\), then find \(\lim _{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}\).

    Solution

    We have,

    \( \lim _{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2} \)

    \(=\lim _{x \rightarrow 2} \frac{x f(2)-2 f(2)+2 f(2)-2 f(x)}{x-2} \)

    \(=\lim _{x \rightarrow 2} \frac{(x-2) f(2)-2(f(x)-f(2))}{x-2} \)

    \( =\lim _{x \rightarrow 2} \frac{(x-2) f(2)}{x-2}-2 \lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2} \)

    \(=f(2)-2 f^{\prime}(2) \) \(\quad{\left[\because f^{\prime}(2)=\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}\right]}\)

    \(=4-2 \times 1=2\) \( \quad {\left[\because f(2)=4 \text { and } f^{\prime}(2)=1\right]}\)

  • Question 3
    1 / -0

    If \(f(x)=4 x^{3}-3 x^{2}+5\), then find \(f''(x)\).

    Solution

    Given:

    \(f(x)=4 x^{3}-3 x^{2}+5\)

    We know that:

    If \(f(x)=x^{n}\), then:

    \(f'(x)=n x^{-1}\)

    Differentiating above with respect to x, we get:

    \(f'(x)=4 \times3 \times x^{2}-3 \times2 \times x + 0\)

    \(f'(x)=12 x^{2}-6 x\)

    Again, differentiating above with respect to x, we get:

    (x)=24 x-6)

  • Question 4
    1 / -0

    Find \(\frac{\mathrm{d}^{2} (\cot ^{-1} x)}{\mathrm{dx}^{2}}\).

    Solution

    Given:

    \(\frac{{d}^{2} \cot ^{-1} {x}}{{d} x^{2}}\)

    \(=\frac{{d}}{{dx}} \times \frac{{d} (\cot ^{-1} {x})}{{dx}}\)

    \(=\frac{{d}\left(\frac{-1}{1+{x}^{2}}\right)}{{d} x}\)

    \(=-\frac{{d}\left(\frac{1}{1+x^{2}}\right)}{{dx}}\)

    On applying chain rule of derivative, we get:

    \(=-\frac{{d}\left(\frac{1}{1+x^{2}}\right)}{{d}\left(1+{x}^{2}\right)} \times \frac{{d}\left(1+{x}^{2}\right)}{{dx}}\)

    \(=\frac{1}{\left(1+{x}^{2}\right)^{2}} \times(0+2 {x}) \quad\left(\because \frac{{d}\left(\frac{1}{{x}}\right)}{{dx}}=\frac{-1}{{x}^{2}}\right)\)

    \(=\frac{2 {x}}{\left(1+{x}^{2}\right)^{2}}\)

  • Question 5
    1 / -0

    Let \({f}({x})={x}-\frac{1}{{x}}\), then \({f}'(-1)\) is:

    Solution

    Given here,

    \(f(x)=x-\frac{1}{x}\) ....(1)

    We know that:

    If \(f(x)=x^{n}\), then: 

    \(f^{\prime}(x)=n x^{n-1}\)

    Differentiating (1) with respect to x, we get:

    \(\Rightarrow f^{\prime}(x)=1-\left(\frac{-1}{x^{2}}\right)\)

    \(f^{\prime}(x)=1+\frac{1}{x^{2}}\)

    Putting x = -1 in above, we get:

    \(f'(-1)=1+\frac{1}{(-1)^{2}}\)

    \(=1+1\)

    \(=2\)

  • Question 6
    1 / -0

    If \(y=x^{x}\), what is \(\frac{d y}{d x}\) at \(x=1\) equal to?

    Solution

    Given:

    \(y=x^{x}\)

    Taking log both sides, we get,

    \(\Rightarrow \log y=\log x^{x}\)

    \(\Rightarrow \log y=x \log x\quad\left(\because \log m^{n}=n \log m\right)\)

    Differentiating above with respect to x, we get:

    \(\Rightarrow \frac{1}{y} \times \frac{d y}{d x}=x \times \frac{\log x}{d x}+\log x \times \frac{d x}{d x}\)

    \(\Rightarrow \frac{1}{y} \times \frac{d y}{d x}=x \times \frac{1}{x}+\log x \times 1\)

    \(\Rightarrow \frac{d y}{d x}=y \times[1+\log x]\)

    \(\Rightarrow \frac{d y}{d x}=x^{x} \times[1+\log x]\)

    Putting x = 1, we get:

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=1^{1} \times[1+\log 1]\)

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=1 \times[1+0] \quad(\because \log 1=0)\)

    \(\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=1\)

  • Question 7
    1 / -0

    If \(f(x)=\left\{\begin{array}{cl}1, & \text { if } x \leq 3 \\ a x+b, & \text { if } 3

    Determine the values of \(a\) and \(b\) so that \(f(x)\) is continuous.

    Solution

    The given function is a constant function for all \(x<3\) and for all \(x>5\) so it is continuous for all \(x<3\) and for all \(x>5\). We know that a polynomial function is continuous. So, the given function is continuous for all \(x \in(3,5)\). 

    Thus, \(f(x)\) is continuous at each \(x \in R\) except possibly at \(x=3\) and \(x=5\).

    At, \(x=3\), we have

    \(\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3} 1=1, \lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3} a x+b=3 a+b\) and, \(f(3)=1\)

    For \(f(x)\) be continuous at \(x=3\), we must have

    \( \lim _{x \rightarrow 3^{-}} f(x)  =\lim _{x \rightarrow 3^{+}} f(x)=f(3) \)

    \(\Rightarrow  1 =3 a+b\cdots(i)\)

    At \(x=5\), we have

    \(\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5} a x+b=5 a+b ; \lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5} 7=7\) and  \(f(5)=7\)

    For \(f(x)\) to be continuous at \(x=5\), we must have

    \(\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{+}} f(x)=f(5) \)

    \(\Rightarrow  5 a+b  =7\cdots(ii)\)

    Solving (i) and (ii), we get \(a=3, b=-8\)

  • Question 8
    1 / -0

    Let \({f}({x})=2 {x}^{2}+\frac{1}{{x}}\), then \({f'}(1)\) is:

    Solution

    \(f(x)=2 x^{2}+\frac{1}{x}\) .... (1)

    We know that: If \(f(x)=x^{n}\), then: \(f'(x)=n x^{n-1}\)

    Differentiating (1) with respect to x, we get:

    \(\Rightarrow f^{\prime}(x)=4 x-\frac{1}{x^{2}}\)

    Putting x = 1 in above, we get:

    \(f'(1)=4 \times 1-\frac{1}{1^{2}}\)

    \(f'(1)=4-1=3\)

    \(\therefore\) The value of \(f^{\prime}(1)\) is 3.

  • Question 9
    1 / -0

    If \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\), then \(\frac{d y}{d x}=?\)

    Solution

    Given that:

    \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\)

    Differentiating with respect to \(x\), we get:

    \(\Rightarrow \frac{2 {x}}{{a}^{2}}+\frac{2 {y}}{{b}^{2}} \frac{{dy}}{{dx}}=0\)

    \(\Rightarrow \frac{2 {y}}{{b}^{2}} \frac{{dy}}{{dx}}=-\frac{2 {x}}{a^{2}}\)

    \(\therefore \frac{{dy}}{{dx}}=-\frac{{b}^{2} {x}}{{a}^{2} {y}}\)

  • Question 10
    1 / -0

    If \(x^{e}=e^{x^{2}+y^{2}}\), then find \(\frac{d y}{d x}\).

    Solution

    Given:

    \(x^{e}=e^{x^{2}+y^{2}}\)

    Taking log on both sides, we get:

    \(\Rightarrow \log x^{e}=\log e^{x^{2}+y^{2}}\)

    \(\Rightarrow e \log x=\left(x^{2}+y^{2}\right) \log e\)

    \(\left[\because \log m^{n}=n \log m\right]\)

    \(\Rightarrow e \log x=x^{2}+y^{2} \quad [\because \log e=1]\)

    Differentiating with respect to x, we get:

    \(\Rightarrow {e}\left(\frac{1}{{x}}\right)=2 {x}+2 {y} \frac{{dy}}{{dx}}\)

    \(\Rightarrow \frac{{e}}{{x}}-2 {x}=2 {y} \frac{{dy}}{{dx}}\)

    \(\therefore \frac{{dy}}{{dx}}=\frac{{e}-2 {x}^{2}}{2 {xy}}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now