Let \(E_{1}\) be the event that the outcome on the die is 5 or \(6, E_{2}\) be the event that the outcome on the die is \(1,2,3\) or 4 and \(\mathrm{A}\) be the event getting exactly head.
Then \(P\left(E_{1}\right)=\frac{2}{6}\)
\(=\frac{1}{ 3}\)
\(P\left(E_{2}\right)=\frac{4}{6}\)
\(=\frac{2}{3}\)
As in throwing a coin three times we get 8 possibilities.
(HHH, HHT, HTH, THH, TTH, THT, HTT, TTT)
\(\Rightarrow P\left(\frac{A}{ E_{1}}\right)=P\) (obtaining exactly one head by tossing the coin three times if she get 5 or 6\()=\frac{3}{8}\)
And \(P\left(\frac{A}{E_{2}}\right)=P\) (obtaining exactly one head by tossing the coin three times if she get \(1,2,3\) or 4\()=\frac{1 }{2}\)
Now the probability that the girl threw \(1,2,3\) or 4 with a die, being given that she obtained exactly one head, is \(\mathrm{P}\) \(\left(\frac{\mathrm{E}_{2}}{\mathrm{A}}\right)\)
By using Bayes' theorem, we have
\(\mathrm{P}\left(\frac{\mathrm{E}_{2}}{ \mathrm{A}}\right)=\frac{\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{E}_{2}}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{E}_{1}}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{E}_{2}}\right)}\)
Now by substituting the values we get
\(=\frac{\frac{2}{3} \cdot \frac{1}{2}}{\frac{1}{3} \cdot \frac{3}{8}+\frac{2}{3} \cdot \frac{1}{2}}\)
\(=\frac{\frac{1}{3}}{\frac{1}{8}+\frac{1}{3}} \)
\(=\frac{\frac{1}{3}}{\frac{3+8}{24}}=\frac{8}{11}\)
\(\Rightarrow \mathrm{P}\left(\frac{\mathrm{E}_{2}}{\mathrm{A}}\right)=\frac{8}{11}\)