Self Studies

Three Dimension...

TIME LEFT -
  • Question 1
    1 / -0

    If in a right-angled triangle \(A B C\), hypotenuse \(A C=p\), then what is \(\overrightarrow{A B} \cdot \overrightarrow{A C}+\overrightarrow{B C} \cdot \overrightarrow{B A}+\overrightarrow{C A} \cdot \overrightarrow{C B}\) equal to:

  • Question 2
    1 / -0

    The direction ratios of a line are \((1,-3,2)\). Its direction cosines will be:

  • Question 3
    1 / -0

    If vector \(b\) is vector whose initial point divides the join of \(5 i\) and \(5 j\) in the ratio \(k: 1\) and terminal point is origin and |vector \(\mathrm{b} \mid \leq \sqrt{37}\), then the set of exhaustive values of \(\mathrm{k}\) is:

  • Question 4
    1 / -0

    If \(\overrightarrow{ a }=4 \hat{ i }+6 \hat{ j }\) and \(\overrightarrow{ b }=3 \hat{ j }+4 \hat{ k }\), then the vector form of the component of \(\vec{a}\) along \(\vec{b}\) is:

  • Question 5
    1 / -0

    Find the direction cosines of the vector \(7 \hat{\imath}+4 \hat{\jmath}-3 \hat{k}\).

  • Question 6
    1 / -0

    Find the value of \(x\) for which \(x(\hat{i}+\hat{j}+\hat{k})\) is a unit vector.

  • Question 7
    1 / -0

    If \(|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}|\), then angle between \(\overrightarrow{\mathrm{a}}\) and \(\overrightarrow{\mathrm{b}}\) is:

  • Question 8
    1 / -0

    Find the direction cosines of the vector \(\hat{\imath}+2 \hat{\jmath}-\mathrm{k}\).

  • Question 9
    1 / -0

    If \(\overrightarrow{ a }=\hat{ i }+2 \hat{ j }-3 \hat{ k }, \overrightarrow{ b }=3 \hat{ i }-\hat{ j }+2 \hat{ k }\) then the angle between \(\vec{a}+\vec{b}, \vec{a}-\vec{b}\) is:

  • Question 10
    1 / -0

    If â and \(\mathrm{b}\) are two unit vectors, then the vector \((\hat{a}+6) \times(\hat{a} \times 6)\) is parallel to:

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now