Given:
The vector \(-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}\) bisects the angle between the vectors \(\vec{\mathrm{c}}\) and \(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}\).
Let \(\hat{c}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}\)
where \(x^{2}+y^{2}+z^{2}=1\)...(1)
Unit vector along \(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}=\frac{3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}}{\sqrt{3^{2}+4^{2}}}\)
\(=\frac{3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}}{5}\)
The bisectors of these two is given by:
\(\mathrm{r} =\mathrm{t}(\hat{\mathrm{a}}+\hat{\mathrm{b}}) \)
\(\mathrm{r} =\mathrm{t}\left(\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{x} \hat{\mathrm{k}}+\frac{3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}}{5}\right) \)
\(\mathrm{r} =\frac{\mathrm{t}}{5}[(5 \mathrm{x}+3) \hat{\mathrm{i}}+(5 \mathrm{y}+4) \hat{\mathrm{j}}+5 \mathrm{z} \hat{\mathrm{k}}) \)...(2)
But the bisector is given by \(-\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}\)...(3)
Comparing (2) and (3), we get
\(\frac{\mathrm{t}}{5}(5 \mathrm{x}+3)=-1 \)
\(\Rightarrow \mathrm{x}=-\frac{5+3 \mathrm{t}}{5 \mathrm{t}} \)
\(\frac{\mathrm{t}}{5}(5 \mathrm{y}+4)=1\)
\( \Rightarrow \mathrm{y}=\frac{5-4 \mathrm{t}}{5 \mathrm{t}} \)
\(\frac{\mathrm{t}}{5}(5 \mathrm{z})=-1 \)
\(\Rightarrow \mathrm{z}=-\frac{1}{\mathrm{t}}\)
Put all the values in equation (1), we get
\(\left(-\frac{5+3 t}{5 \mathrm{t}}\right)^{2}+\left(\frac{5-4 t}{5 \mathrm{t}}\right)^{2}+\left(-\frac{1}{\mathrm{t}}\right)^{2}=1 \)
\(\Rightarrow \frac{25+9 \mathrm{t}^{2}+30 \mathrm{t}+25+16 \mathrm{t}^{2}-40 \mathrm{t}+25}{25 \mathrm{t}^{2}}=1 \)
\(\Rightarrow 25 \mathrm{t}^{2}-10 \mathrm{t}+75=25 \mathrm{t}^{2} \)
\(\Rightarrow \mathrm{t}=7.5\)
Thus,
\(\mathrm{x}=-\frac{5+3 \times 7.5}{5 \times 7.5}=-\frac{11}{15} \)
\(\mathrm{y}=\frac{5-4 \times 7.5}{5 \times 7.5}=-\frac{10}{15} \)
\(\mathrm{z}=-\frac{1}{7.5}=-\frac{2}{15} \)
\(\hat{c}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}\)
So, \( \hat{\mathrm{c}}=\frac{1}{15}(-11 \hat{\mathrm{i}}-10 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})\)