Properties of Transpose of a Matrix:
The transpose of the transpose of a matrix is the matrix itself: \(\left( A ^{\prime}\right)^{\prime}= A\).
The transposes of equal matrices are also equal:
\(A = B \Rightarrow A^{\prime}= B ^{\prime}\)
The transpose of the sum/difference of two matrices is equivalent to the sumvdifference of their transposes: \(( A \pm B )^{\prime}=A^{\prime} \pm B^{\prime}\)
The transpose of the product of two matrices is equivalent to the product of their transposes in reversed order \(( AB )^{\prime}= B ^{\prime} A ^{\prime}\)
Using the Properties of Transpose of a Matrix:
\(3 A +4 B ^{\prime}=\left[\begin{array}{ccc}7 & -10 & 17 \\ 0 & 6 & 31\end{array}\right]\)
\(\Rightarrow\left(3 A +4 B ^{\prime}\right)^{\prime}=\left[\begin{array}{ccc}7 & -10 & 17 \\ 0 & 6 & 31\end{array}\right]^{\prime}\)
\(\Rightarrow 3 A ^{\prime}+4\left( B ^{\prime}\right)^{\prime}=\left[\begin{array}{ccc}7 & -10 & 17 \\ 0 & 6 & 31\end{array}\right]^{\prime}\)
\(\Rightarrow 3 A ^{\prime}+4 B =\left[\begin{array}{cc}7 & 0 \\ -10 & 6 \\ 17 & 31\end{array}\right]\)
Also,
\(2 B -3 A ^{\prime}=\left[\begin{array}{rr}-1 & 18 \\ 4 & 0 \\ -5 & -7\end{array}\right]\)
Adding equations (1) and (2), we get,
\(\left(3 A ^{\prime}+4 B \right)+\left(2 B -3 A ^{\prime}\right)=\left[\begin{array}{cc}7 & 0 \\ -10 & 6 \\ 17 & 31\end{array}\right]+\left[\begin{array}{rr}-1 & 18 \\ 4 & 0 \\ -5 & -7\end{array}\right]\)
\(\Rightarrow 6 B +0=\left[\begin{array}{cc}7-1 & 0+18 \\ -10+4 & 6+0 \\ 17-5 & 31-7\end{array}\right]\)
\(\Rightarrow B =\left[\begin{array}{cc}1 & 3 \\ -1 & 1 \\ 2 & 4\end{array}\right]\)