Self Studies

Vector Algebra Test - 76

Result Self Studies

Vector Algebra Test - 76
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(A=\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\) and \(A + A ^{T}= I\) Where \(I\) is the unit matrix of \(2 \times 2\) and  \(A ^{T}\) is the transpose of \(A\), then the value of \(\theta\) is equal to:

    Solution

    Given:

    \(A =\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\)

    \(A + A ^{T}=1\)

    The transpose of matrix \(A\) is given by,

    \(A^{T}=\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]\)

    As, \(A + A ^{T}=I\)

    \(\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]+\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]=I\)

    \(\Rightarrow\left[\begin{array}{cc}2 \cos 2 \theta & 0 \\ 0 & 2 \cos 2 \theta\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\)

    As we know that,

    If two matrices \(A\) and \(B\) are equal then their corresponding elements are also equal.

    \(\therefore 2 \cos 2 \theta=1\)

    \(\Rightarrow \cos 2 \theta=\frac{1}{2}\)

    \(\Rightarrow \cos 2 \theta=\cos 60^\circ\)

    \(\Rightarrow 2 \theta=\frac{\pi}{3}\quad[\because \cos 60^\circ=\frac{\pi}{3}]\)

    \(\therefore \theta=\frac{\pi}{6}\)

    So, the value of \(\theta\) is \(\frac{\pi}{6}\).

  • Question 2
    1 / -0

    Consider the following statements in respect of the matrix \(A=\left[\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right]\)

    1) The matrix \(A\) is skew-symmetric.

    2) The matrix \(A\) is symmetric.

    3) The matrix \(A\) is Iinvertible.

    Which of the above statements is/are correct?

    Solution
    Given,
    \(\begin{aligned}
    & A =\left[\begin{array}{ccc}
    0 & 1 & 2 \\
    -1 & 0 & -3 \\
    -2 & 3 & 0
    \end{array}\right] \end{aligned}\)
    The transpose of matrix \(A\) is given by,
    \(\begin{aligned} A ^{ T }=\left[\begin{array}{ccc}
    0 & -1 & -2 \\
    1 & 0 & 3 \\
    2 & -3 & 0
    \end{array}\right]
    \end{aligned}\)
    As we know,
    If the transpose of matrix is equal to it, the matrix is known as symmetric matrix.
    If the transpose of matrix is equal to the negative of itself, the matrix is said to be skew symmetric matrix.
    If the determinant of a square matrix \(n \times n\) is zero, then A is not invertible.
    Here, transpose of \(A\) is negative of \(A\), so matrix \(A\) is a skew symmetric matrix.
    \(\begin{aligned}
    &A=\left[\begin{array}{ccc}
    0 & 1 & 2 \\
    -1 & 0 & -3 \\
    -2 & 3 & 0
    \end{array}\right] \\
    & A=0-1(0-6)+2(-3-0) \\
    &=6-6 \\
    &=0
    \end{aligned}\)
    So, A can not be an invertible matrix.
  • Question 3
    1 / -0

    If the matrix \(\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\) is singular, then \(\theta=?\)

    Solution

    A matrix is said to be singular if its determinant is zero i.e. for matrix \(A\) to be singular, \(| A |=0\)

    For a singular matrix, the inverse doesn't exist

    Given that, matrix \(\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\) is singular

    Then, \(\left|\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right|=0\)

    \(\Rightarrow\left|\begin{array}{ll}\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right|=0\)

    \(\Rightarrow \cos ^2 \theta-\sin ^2 \theta=0\)

    \(\Rightarrow \cos 2 \theta=\cos \frac{\pi}{2}\)

    \(\therefore \theta=\frac{\pi}{4}\)

  • Question 4
    1 / -0

    If \(\left[\begin{array}{ccc}1 & -4 & 3 \\ 0 & 6 & -7 \\ 2 & 4 & \lambda\end{array}\right]\) is not an invertible matrix, then what is the value of \(\lambda\)?

    Solution
    Given,
    \(A=\left[\begin{array}{ccc}0 & 6 & -7 \\ 2 & 4 & \lambda\end{array}\right]\) is not an invertible matrix.
    \(\therefore A\) is a singular matrix.
    As we know,
    If \(A\) is a singular matrix. then \(|A|=0\).
    \(| A |=0 \)
    \(\Rightarrow\left|\begin{array}{ccc}
    1 & -4 & 3 \\
    0 & 6 & -7 \\
    2 & 4 & \lambda
    \end{array}\right|=0 \)
    We know that,
    \(X=\left[\begin{array}{ll}
    A_1 & A_2 & A_3 \\
    B_1 & B_2 & B_3\\
    C_1 & C_2 & C_3
    \end{array}\right]\)
    \(X=A_1(B_2C_3-B_3C_2)-A_2(B_1C_3-B_3C_1)+A_3(B_1C_2-B_2C_1)\)
    Then,
    \( 1(6 \lambda+28)+4(0+14)+3(0-12)=0 \)
    \(\Rightarrow 6 \lambda+28+56-36=0 \)
    \(\Rightarrow 6 \lambda+48=0 \)
    \(\Rightarrow \lambda=-8\)
    So, if \(\left[\begin{array}{ccc}1 & -4 & 3 \\ 0 & 6 & -7 \\ 2 & 4 & \lambda\end{array}\right]\) is not an invertible matrix, then the value of \(\lambda=-8\)
  • Question 5
    1 / -0

    If \(x+2 y=\left[\begin{array}{cc}2 & -3 \\ 1 & 5\end{array}\right]\) and \(2 x+5 y=\left[\begin{array}{ll}7 & 5 \\ 2 & 3\end{array}\right]\), then \(y\) is equal to:

    Solution
    Given,
    \(\begin{aligned}
    &x+2 y=\left[\begin{array}{cc}
    2 & -3 \\
    1 & 5
    \end{array}\right] \end{aligned}\)...(1)
    \(\begin{aligned} &2 x+5 y=\left[\begin{array}{ll}
    7 & 5 \\
    2 & 3
    \end{array}\right]
    \end{aligned}\)...(2)
    Multiplying by 2 in the equation (1), we get
    \( 2 x+4 y=\left[\begin{array}{cc}
    4 & -6 \\
    2 & 10
    \end{array}\right]\)...(3)
    Subtracting equation (3) from equation (2), we get
    \((2 x+5 y)-(2 x+4 y)=\left[\begin{array}{ll}
    7 & 5 \\
    2 & 3
    \end{array}\right]-\left[\begin{array}{cc}
    4 & -6 \\
    2 & 10
    \end{array}\right]\)
    We know that,
    \(\left[\begin{array}{cc}A_1 & A_2 \\ B_1 & B_2\end{array}\right]-\left[\begin{array}{cc}C_1 & C_2 \\ D_1 & D_2\end{array}\right]=\left[\begin{array}{cc}A_1-C_1 & A_2-C_2 \\ B_1-D_1 & B_2-D_2\end{array}\right]\)
    \(\therefore y=\left[\begin{array}{cc}
    3 & 11 \\
    0 & -7
    \end{array}\right]\)
  • Question 6
    1 / -0

    If \(A=\left[\begin{array}{ccc}1 & 3+x & 2 \\ 1-x & 2 & y+1 \\ 2 & 5-y & 3\end{array}\right]\) is a symmetric matrix, then \(3 x+y\) is equal to:

    Solution
    Given,
    \(\begin{aligned}
    &A=\left[\begin{array}{ccc}
    1 & 3+x & 2 \\
    1-x & 2 & y+1 \\
    2 & 5-y & 3
    \end{array}\right] \\\end{aligned}\)
    As we know,
    Any real square matrix \(A= (a_{ij})\) is said to be a symmetric matrix if \(a_{ij}=a_{ji}\) or in other words if \(A\) is a real square matrix such that \(A=A^t\) then \(A\) is said to be a symmetric matrix.
    \(A=A^{t}\)
    \(\therefore a_{ij}=a_{ji}\)
    \(\begin{aligned}\therefore A^{t}=\left[\begin{array}{ccc}
    1 & 1-x & 2 \\
    3+x & 2 & 5-y \\
    2 & y+1 & 3
    \end{array}\right]=\left[\begin{array}{ccc}
    1 & 3+x & 2 \\
    1-x & 2 & y+1 \\
    2 & 5-y & 3
    \end{array}\right]=A
    \end{aligned}\)On comparing, we get
    \(3+x=1-x \)
    \(\Rightarrow x+x=1-3\)
    \(\Rightarrow 2x=-2\)
    \(\Rightarrow x=-1\)
    And, \(y+1=5-y\)
    \(\Rightarrow y+y=5-1\)
    \(\Rightarrow 2y=4\)
    \(\Rightarrow y=2\)
    Now,
    \(3 x+y=3\times (-1)+2 \)
    \(\Rightarrow 3 x+y=-3+2\)
    \(\Rightarrow 3x+y=-1\)
  • Question 7
    1 / -0

    If \(A =\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]\) then \(AA ^{T}\) is equal to: (where \(A ^{ T }\) is the transpose of \(\left.A \right)\)

    Solution
    Given,
    \(\begin{aligned}A=\left[\begin{array}{cc}
    \cos \alpha & \sin \alpha \\
    -\sin \alpha & \cos \alpha
    \end{array}\right] \\ \end{aligned}\)
    In transpose of matrix, rows are converted into columns and vice-versa.
    The transpose of matrix \(A\) is given by,
    \(\begin{aligned} A ^{ T }=\left[\begin{array}{cc}
    \cos \alpha & -\sin \alpha \\
    \sin \alpha & \cos \alpha
    \end{array}\right]
    \end{aligned}\)
    Now,
    \(AA ^{ T }=\left[\begin{array}{cc}
    \cos \alpha & \sin \alpha \\
    -\sin \alpha & \cos \alpha
    \end{array}\right] \times\left[\begin{array}{cc}
    \cos \alpha & -\sin \alpha \\
    \sin \alpha & \cos \alpha
    \end{array}\right]\)
    We know that,
    \(X=\left[\begin{array}{cc}A_1 & A_2 \\ B_1 & B_2\end{array}\right], Y=\left[\begin{array}{cc}C_1 & C_2 \\ D_1 & D_2\end{array}\right]\).
    \(XY=\left[\begin{array}{cc}A_1C_1+A_2D_1 & A_1C_2+A_2D_2 \\ B_1C_1+B_2D_1 & B_1C_2+B_2D_2 \end{array}\right]\)
    \(\Rightarrow AA ^{ T }=\left[\begin{array}{cc}
    \cos ^{2} \alpha+\sin ^{2} \alpha & -\cos \alpha \sin \alpha+\cos \alpha \sin \alpha \\
    -\cos \alpha \sin \alpha+\cos \alpha \sin \alpha & \sin ^{2} \alpha+\cos ^{2} \alpha
    \end{array}\right] \\
    \Rightarrow AA ^{ T }=\left[\begin{array}{ll}
    1 & 0 \\
    0 & 1
    \end{array}\right]\)
    \(\Rightarrow AA ^{ T }=I\)
    So, \(A A^{T}\) is a identify matrix.
  • Question 8
    1 / -0

    Find \(2 X-Y\) matrix such as \(X+Y=\left[\begin{array}{ll}7 & 5 \\ 3 & 4\end{array}\right]\) and \(X-Y=\left[\begin{array}{cc}1 & -3 \\ 3 & 0\end{array}\right]\).

    Solution
    Given,
    \(X+Y=\left[\begin{array}{ll}7 & 5 \\ 3 & 4\end{array}\right] \)...(i)
    \(X-Y=\left[\begin{array}{cc}
    1 & -3 \\
    3 & 0
    \end{array}\right]\)...(ii)
    Adding the equations (i) and (ii), we get
    \(2 X=\left[\begin{array}{ll}
    8 & 2 \\
    6 & 4
    \end{array}\right]\)
    We know that,
    When,
    \(a\div\left[\begin{array}{cc}A_1 & A_2 \\ B_1 & B_2\end{array}\right]=\left[\begin{array}{cc}A_1\div a & A_2\div a \\ B_1\div a & B_2\div a\end{array}\right]\)
    \(\Rightarrow X=\left[\begin{array}{ll}
    4 & 1 \\
    3 & 2
    \end{array}\right]\)
    Substracting (ii) from (i), we get
    \(\begin{aligned}
    &\text { 2Y }=\left[\begin{array}{ll}
    6 & 8 \\
    0 & 4
    \end{array}\right] \\
    &\Rightarrow Y=\left[\begin{array}{ll}
    3 & 4 \\
    0 & 2
    \end{array}\right]\end{aligned} \)
    Let \(A =2 X - Y\)
    \(A=2 \times\left[\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right]-\left[\begin{array}{ll}3 & 4 \\ 0 & 2\end{array}\right]\)
    We know that,
    \(a\times\left[\begin{array}{cc}A_1 & A_2 \\ B_1 & B_2\end{array}\right]=\left[\begin{array}{cc}A_1\times a & A_2\times a \\ B_1\times a & B_2\times a\end{array}\right]\)
    \(\Rightarrow A=\left[\begin{array}{ll}8 & 2 \\ 6 & 4\end{array}\right]-\left[\begin{array}{ll}3 & 4 \\ 0 & 2\end{array}\right]\)
    \(\Rightarrow A=\left[\begin{array}{cc}5 & -2 \\ 6 & 2\end{array}\right]\)
    \(\therefore 2X-Y =\left[\begin{array}{cc}5 & -2 \\ 6 & 2\end{array}\right]\)
  • Question 9
    1 / -0

    If \(3 A +4 B ^{\prime}=\left[\begin{array}{ccc}7 & -10 & 17 \\ 0 & 6 & 31\end{array}\right]\) and \(2 B -3 A ^{\prime}=\left[\begin{array}{rr}-1 & 18 \\ 4 & 0 \\ -5 & -7\end{array}\right]\) then \(B =\) ?

    Solution

    Properties of Transpose of a Matrix:

    The transpose of the transpose of a matrix is the matrix itself: \(\left( A ^{\prime}\right)^{\prime}= A\).

    The transposes of equal matrices are also equal:

    \(A = B \Rightarrow A^{\prime}= B ^{\prime}\)

    The transpose of the sum/difference of two matrices is equivalent to the sumvdifference of their transposes: \(( A \pm B )^{\prime}=A^{\prime} \pm B^{\prime}\)

    The transpose of the product of two matrices is equivalent to the product of their transposes in reversed order \(( AB )^{\prime}= B ^{\prime} A ^{\prime}\)

    Using the Properties of Transpose of a Matrix:

    \(3 A +4 B ^{\prime}=\left[\begin{array}{ccc}7 & -10 & 17 \\ 0 & 6 & 31\end{array}\right]\)

    \(\Rightarrow\left(3 A +4 B ^{\prime}\right)^{\prime}=\left[\begin{array}{ccc}7 & -10 & 17 \\ 0 & 6 & 31\end{array}\right]^{\prime}\)

    \(\Rightarrow 3 A ^{\prime}+4\left( B ^{\prime}\right)^{\prime}=\left[\begin{array}{ccc}7 & -10 & 17 \\ 0 & 6 & 31\end{array}\right]^{\prime}\)

    \(\Rightarrow 3 A ^{\prime}+4 B =\left[\begin{array}{cc}7 & 0 \\ -10 & 6 \\ 17 & 31\end{array}\right]\)

    Also,

    \(2 B -3 A ^{\prime}=\left[\begin{array}{rr}-1 & 18 \\ 4 & 0 \\ -5 & -7\end{array}\right]\)

    Adding equations (1) and (2), we get,

    \(\left(3 A ^{\prime}+4 B \right)+\left(2 B -3 A ^{\prime}\right)=\left[\begin{array}{cc}7 & 0 \\ -10 & 6 \\ 17 & 31\end{array}\right]+\left[\begin{array}{rr}-1 & 18 \\ 4 & 0 \\ -5 & -7\end{array}\right]\)

    \(\Rightarrow 6 B +0=\left[\begin{array}{cc}7-1 & 0+18 \\ -10+4 & 6+0 \\ 17-5 & 31-7\end{array}\right]\)

    \(\Rightarrow B =\left[\begin{array}{cc}1 & 3 \\ -1 & 1 \\ 2 & 4\end{array}\right]\)

  • Question 10
    1 / -0
    Find the value of \(y-x\) from the following equation:
    \(2\left[\begin{array}{cc}
    x & 5 \\
    7 & y-3
    \end{array}\right]+\left[\begin{array}{cc}
    3 & -4 \\
    1 & 2
    \end{array}\right]=\left[\begin{array}{cc}
    7 & 6 \\
    15 & 14
    \end{array}\right]\)
    Solution
    Given,
    \(\begin{aligned} 2\left[\begin{array}{cc}
    x & 5 \\
    7 & y-3
    \end{array}\right]+\left[\begin{array}{cc}
    3 & -4 \\
    1 & 2
    \end{array}\right]=\left[\begin{array}{cc}
    7 & 6 \\
    15 & 14
    \end{array}\right] \end{aligned}\)
    \(\begin{aligned}\Rightarrow\left[\begin{array}{cc}
    2 x & 10 \\
    14 & 2 y -6
    \end{array}\right]+\left[\begin{array}{cc}
    3 & -4 \\
    1 & 2
    \end{array}\right]=\left[\begin{array}{cc}
    7 & 6 \\
    15 & 14
    \end{array}\right] \end{aligned}\)
    \(\begin{aligned} \Rightarrow\left[\begin{array}{cc}
    2 x +3 & 6 \\
    15 & 2 y -4
    \end{array}\right]=\left[\begin{array}{cc}
    7 & 6 \\
    15 & 14
    \end{array}\right]
    \end{aligned}
    \)
    As we know that,
    If two matrices \(A\) and \(B\) are equal then their corresponding elements are also equal.
    \(\therefore 2 x+3=7 \)
    \(\Rightarrow 2x=7-3\)
    \(\Rightarrow 2x=4\)
    \(\Rightarrow x=2\)
    And \(2 y-4=14\)
    \(\Rightarrow 2y=14+4\)
    \(\Rightarrow 2y=18\)
    \(\Rightarrow y=9\)
    Now,
    \(y-x=9-2=7\)
    So, the value of \(y-x\) is \(7\).
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now