Self Studies

Vector Algebra ...

TIME LEFT -
  • Question 1
    1 / -0

    If \(2\left[\begin{array}{ll}1 & 3 \\ 0 & x \end{array}\right]+\left[\begin{array}{ll} y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]\) then find the value of \(x+y\).

  • Question 2
    1 / -0

    If \(\left[\begin{array}{cc}2 x+y & 4 x \\ 5 x-7 & 4 x\end{array}\right]=\left[\begin{array}{cc}7 & 7 y-13 \\ y & x+6\end{array}\right]\), then \(x+y=?\)

  • Question 3
    1 / -0

    If \(A =\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]\) and \(B =\left[\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right]\), then \(B ^{-1} A ^{-1}\) is equal to:

  • Question 4
    1 / -0

    If \(A=\left[\begin{array}{cc}4 & -3 \\ 1 & 0\end{array}\right]\) then \(A+A^{T}\) is equal to:

  • Question 5
    1 / -0

    Construct a \(3 \times 2\) matrix whose elements are given by \(a _{ ij }=\frac{1}{3}|2 i + j |\).

  • Question 6
    1 / -0

    If \(A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)\), then \(A^{-1}=\) ?

  • Question 7
    1 / -0

    If \(A B^{T}\) is defined as a square matrix then what is the order of the matrix \(B\), where matrix \(A\) has order \(2 \times 3\)?

  • Question 8
    1 / -0

    If \(A=\left[\begin{array}{cc}\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right]\), then for what value of \(\alpha, A\) is an identity matrix?

  • Question 9
    1 / -0

    If \(A=\left[\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right]=\frac{1}{2}(P+Q)\) where \(P\) is symmetric and \(Q\) is skew symmetric matrix then \(P\) and \(Q\) are:

  • Question 10
    1 / -0

    If \(A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\), then the expression \(A^3-2 A^2\) is:

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now