Self Studies

Vector Algebra ...

TIME LEFT -
  • Question 1
    1 / -0

    If \(A=\left[\begin{array}{ccc}2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5\end{array}\right]\) is a symmetric matrix then \(x=?\)

  • Question 2
    1 / -0

    Find the value of \(X\) and \(Y\) if \(X+Y=\left[\begin{array}{cc}10 & 2 \\ 0 & 9\end{array}\right], X-Y=\left[\begin{array}{cc}6 & 12 \\ 0 & -5\end{array}\right]\).

  • Question 3
    1 / -0

    Consider the matrix \(A=\left[\begin{array}{ccc}2 & 4 & 5 \\ 1 & 6 & 4 \\ 2 & 8 & 9\end{array}\right]\). Find the element:

  • Question 4
    1 / -0

    What is the order of \(\left[\begin{array}{lll}4 & 4 & 1\end{array}\right]\left[\begin{array}{lll}3 & 2 & 5 \\ 9 & 7 & 4 \\ 6 & 4 & 1\end{array}\right]\) ?

  • Question 5
    1 / -0

    For \(A=\left[\begin{array}{ll}2 & 4 \\ 0 & 3\end{array}\right]\), then \(A^{-1}\) is given by :

  • Question 6
    1 / -0

    Order of \(\left[\begin{array}{lll}2 & 7 & 4 \\ 3 & 1 & 0\end{array}\right]\left[\begin{array}{l}5 \\ 4 \\ 3\end{array}\right]\) is:

  • Question 7
    1 / -0

    If \(A =\left[\begin{array}{cc}4 & x +2 \\ 2 x -3 & x +1\end{array}\right]\) is symmetric, then \(x\) is equal to:

  • Question 8
    1 / -0

    If \(A =\left[\begin{array}{rr}0 & - i \\ i & 0\end{array}\right]\) and \(B =\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]\) are matrices, then \(AB + BA\) is:

  • Question 9
    1 / -0

    If \(A =\left[\begin{array}{ccc}1 & -1 & 0 \\ 3 & 2 & -1\end{array}\right]\) and \(B =\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]\), find \(( AB )^{T}\).

  • Question 10
    1 / -0

    If \(\left[\begin{array}{ccc}1 & -3 & 2 \\ 2 & -8 & 5 \\ 4 & 2 & \lambda\end{array}\right]\) is not an invertible matrix, then what is the value of \(\lambda\)?

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now