Hint: The resultant intensity of sources can be written as,
$$I_{ R }={ I }_{ 1 }+{ I }_{ 2 }+2\sqrt { { I }_{ 1 }{ I }_{ 2 } } $$
Step 1: Given dataMaximum intensity $${ I }_{ 0 }=100units$$
Intensity of one source is reduced by $$50 percent$$
We know that when two source having intensity of $$I_{ 1 }\quad and\quad { I }_{ 2 }$$ Then resultant intensity is
$$I_{ R }={ I }_{ 1 }+{ I }_{ 2 }+2\sqrt { { I }_{ 1 }{ I }_{ 2 } } $$
Here,
$${ I }_{ 1 }={ I }_{ 0 }\\ { I }_{ 2 }={ I }_{ 0 } $$
Putting all value in above equation
$$I_{ R }={ I }_{ 0 }+ { I }_{ 0 } +2\sqrt { { I }_{ 0 }\times { I }_{ 0 } } \\ \quad ={ I }_{ 0 }(1+1 +2 )\\ $$
$${ I }_{ 0 }=\frac { { I }_{ R } }{ 4 } =\frac { 100 }{ 4 } =25$$
Step 2: Find the resultant intensity.
When one source is reduced
$${ I }_{ 1 }={ I }_{ 0 }\\ { I }_{ 2 }={ I }_{ 0 }-{ I }_{ 0 }\times \frac { 50 }{ 100 } =\frac { { I }_{ 0 } }{ 2 } $$
Putting all value in above equation
$$I_{ R }={ I }_{ 0 }+\frac { { I }_{ 0 } }{ 2 } +2\sqrt { { I }_{ 0 }\times \frac { { I }_{ 0 } }{ 2 } } \\ \quad ={ I }_{ 0 }(1+\frac { 1 }{ 2 } +\sqrt { 2 } )\\ \quad =25\times 2.91\\ \quad =72.85$$
Correct option is D.