Self Studies

Atoms Test - 57

Result Self Studies

Atoms Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The distance between $$3^{rd}$$ & $$2^{nd}$$ Bohr orbit $$He^{+}$$ is 
    Solution
    Dis\tance between the $${ 2^{ nd } }$$ and the $${ 3^{ rd } }$$ orbits=distance of $${ 3^{ rd } }$$ orbit-distance of second orbit from the nucleus 
    $${ d_{ 3 } } = 0.529 \times \dfrac {  n^{ 2 }}{ z } \times { 10^{ -10 } } m=0.529 \times 9 \times { 10^{ -10 } } m $$
    $${ d_{ 2 } }=0.529\times 4\times { 10^{ -10 } }\, m \\ { d_{ 3 } }-{ d_{ 2 } }=0.529\times 5\times { 10^{ -10 } }\, m  =2.645\times { 10^{ -10 } }\, m=2.645A^{ 0 } $$

    Hence,
    option $$(A)$$ is correct answer.
  • Question 2
    1 / -0
    The ratio of the radii of the first three Bohr orbit in H atom is 
    Solution
    Atomic number $$Z$$ is equal to $$1$$.
    Hence the radius of $$n th$$ orbit, $$r_n=0.529 n^2 A$$
    For first three orbits, $$n$$ values are $$1,2$$ and $$3$$
    ratio of radii of first three orbit $${r_1}:{r_2}:{r_3} = n_1^2:n_2^2:n_3^2$$
    $$\begin{array}{l} \Rightarrow { 1^{ 2 } }:{ 2^{ 2 } }:{ 3^{ 2 } } \\ \Rightarrow 1:4:9 \end{array}$$
  • Question 3
    1 / -0
    The angular momentum of electron in 4th orbit of hydrogen atom is
    Solution
    The angular momentum of electron in $$4th$$ orbit of hydrogen atom is $$\dfrac{{nh}}{{2\pi }}$$
    Hence, Option $$C$$ is correct.
  • Question 4
    1 / -0
    In the Geiger - Marsden scattering experiment, find the distance of closest approach to the nucleus of a $$7.7Mev$$ $$\alpha$$ - particle before it comes momentaily to rest and reverses its direction. ($$'Z'$$ for gold nucleus $$= 79$$)
  • Question 5
    1 / -0
    According to Bohr's model, if the kinetic energy of an  electron in $$2^{nd}$$ orbit of $$He^{+}$$ is $$x$$, then what should be the ionisaion energy of the electron revolving in $$3^{rd}$$ orbit of $$m^{5+} ions>$$
    Solution
    $$\begin{array}{l} X=13\cdot 6\frac { { { { \left( 2 \right)  }^{ 2 } } } }{ { { { \left( 2 \right)  }^{ 2 } } } }  \\ =13\cdot 6 \\ X'=13\cdot \frac { { { { \left( 6 \right)  }^{ 2 } } } }{ { { { \left( 3 \right)  }^{ 2 } } } }  \\ =13\cdot 6\times \frac { { 36 } }{ 9 }  \\ =4X \\ Hence,\, option\, B\, is\, correct\, answer. \end{array}$$
  • Question 6
    1 / -0
    Energy of an electron is given by $$E=-2.178\times { 10 }^{ -18 }J\left( \dfrac { { Z }^{ 2 } }{ { n }^{ 2 } }  \right) $$ Wavelength of light required to excite an electron in an hydrogen atom from level n=1 to n=2 will be:-`
    $$\left( h=6.62\times { 10 }^{ -34 }Js\quad and\quad c=3.0\times { 10 }^{ 8 }{ ms }^{ -1 } \right) $$
    Solution
    $$\begin{array}{l} \dfrac { 1 }{ \lambda  } ={ R_{ H } }{ Z^{ 2 } }\left( { \dfrac { 1 }{ { n_{ 1 }^{ 2 } } } -\dfrac { 1 }{ { n_{ 2 }^{ 2 } } }  } \right)  \\ Z=1 \\ { n_{ 1 } }=1 \\ { n_{ 2 } }=2 \\ \lambda =1.24\times { 10^{ -7 } }m \end{array}$$
  • Question 7
    1 / -0
    The difference between the wave number of $${ 1 }^{ st }$$ line of Balmer series of paschen series for $${ Li }^{ 2+ }ion$$ is:
    Solution
    $$\begin{array}{l} \frac { 1 }{ \lambda  } =R{ t^{ 2 } }\left[ { \frac { 1 }{ { n_{ 1 }^{ 2 } } } -\frac { 1 }{ { n_{ 2 }^{ 2 } } }  } \right]  \\ 1st\, \, line\, \, of\, \, polymer\, \, series=\alpha \to 3 \\ Last\, \, \, n\, \, of\, \, polymer\, \, series\, \, =3\to \infty  \\ L_{ 1 }^{ st }=t=3 \\ { \overline { V } _{ B } }-{ \overline { V } _{ L } }=R{ \left( 3 \right) ^{ 2 } }\left[ { \frac { 1 }{ { { \alpha ^{ 2 } } } } -\frac { 1 }{ { { 3^{ 2 } } } }  } \right] -R{ \left( 3 \right) ^{ 2 } }\left[ { \frac { 1 }{ { { 3^{ 2 } } } } -\frac { 1 }{ \infty  }  } \right]  \\ =R{ \left( 3 \right) ^{ 2 } }\left[ { \frac { 1 }{ 4 } -\frac { 1 }{ 9 } -\frac { 1 }{ 9 }  } \right]  \\ =R\times 9\left[ { \frac { 1 }{ 4 } -\frac { 2 }{ 9 }  } \right]  \\ =R\times 9\times \frac { { 9-8 } }{ { 36 } }  \\ { \overline { V } _{ B } }-{ \overline { V } _{ L } }=R\times 9\times \frac { 1 }{ { 26 } }  \\ The\, \, difference=\frac { R }{ 4 }  \end{array}$$
    Hence, Option $$D$$ is correct.
  • Question 8
    1 / -0
    Two electron separated by a distance $$r$$ experiences force $$F$$ between them . Then force between a proton and a singly ionized helium atom separated by a distance $$2r$$ is
    Solution
    According to Coulomb's law
    $$\begin{array}{l} F=\dfrac { 1 }{ { 4\pi { E_{ 0 } } } } .\dfrac { { \left( e \right) \left( e \right)  } }{ { { r^{ 2 } } } }  \\ { F_{ 1 } }=\dfrac { 1 }{ { 4\pi { E_{ 0 } } } } .\dfrac { { \left( e \right) \left( e \right)  } }{ { { r^{ 2 } } } }  \end{array}$$
    Charge on proton is equal to charge on electron and charge on singly Ionized
    atom separated by distance $$'2r'$$
    $$\begin{array}{l} { F_{ 2 } }=\dfrac { 1 }{ { 4\pi { E_{ 0 } } } } .\frac { { \left( { e\lambda c } \right)  } }{ { { { \left( { 2r } \right)  }^{ 2 } } } }  \\ =\dfrac { 1 }{ { 4\pi { E_{ 0 } } } } .\dfrac { { { e^{ 2 } } } }{ { 4{ r^{ 2 } } } }  \\ \dfrac { { { F_{ 1 } } } }{ { { F_{ 2 } } } } =\dfrac { F }{ 4 }  \end{array}$$
    Option D.
  • Question 9
    1 / -0
    Hydrogen atom in ground state is excited by a monochromatic radiation of $$\lambda =975\mathring { A } $$ Number of spectral lines in the resulting spectrum emitted will be 
  • Question 10
    1 / -0
    The ratio of the frequencies of the long wavelength limits of the Lyman and Balmer series of hydrogen is:
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now