Self Studies

Nuclei Test - 23

Result Self Studies

Nuclei Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The overall process of carbon nitrogen fusion cycle results in the fusion of 4 protons to yield helium nucleus and :
    Solution
    Overall reaction of carbon nitrogen cycle
    $$4   _1^1H   \        \rightarrow   \           _2^4He   +   \          2(_1^0e)   +   \                   Q$$
    (Proton) (Helium)  (Positron) (energy)
    So, 2 positrons are released.
  • Question 2
    1 / -0
    In Carbon-Nitrogen fusion cycle , protons are fused to form a helium nucleus, positrons and release some energy.The number of protons fused and the number of positrons released in this process respectively are
    Solution
    Overall reaction of Carbon - Nitrogen cycle is
    $$4  _1^1H   \rightarrow   _2^4He  +  2(_1^0e)  +  Q$$
    So, 4 protons are fused to give 2 positrons.
  • Question 3
    1 / -0
    Energy in the sun is due to 
    Solution
    Nuclear fusion takes place in the sun and stars.
    So, energy in the sun is due to fusion.
  • Question 4
    1 / -0
    $$1$$ kg of iron (specific heat $$120$$ Cal kg$$^{-1}$$C$$^{-1}$$) is heated by $$1000$$$$^{0}$$C. The increase in its mass is :
    Solution
    Energy given to it $$ = mS\Delta T$$
                                  $$ = (1 kg)(120 \dfrac{cal}{Kg C})(1000^{0}C)$$
                                  $$ = 12 \times 10^{4} Cal$$
                                  $$ = 12 \times 10^{4} \times 4.18  J$$
                                  $$ = 50 \times 10^{4}  J$$
     
    The energy given to it is used to increase its temperature by $$1000^{0} C$$, therefore mass increment is ZERO.
  • Question 5
    1 / -0
    The mass defect for the nucleus of Helium is $$0.0303 \ amu$$. The binding energy per nucleon in $$MeV$$ is
    Solution
    $$ B.E = (931.478 \times .0303  \dfrac{MeV}{c^{2}}) c^{2}$$
             $$ = 28.22  MeV$$

    $$  B.E\  per\  nucleon = \dfrac{BE}{A} = \dfrac{28.22}{4} = 7.05  MeV$$
  • Question 6
    1 / -0
    The mass defect and binding energy per nucleon of an alpha particle are :
    (Mp $$=$$ 1.00734$$u$$, Mn $$=$$ 1.00874$$u$$, M $$=$$ 4.0015$$u$$)
    Solution
    $$^4_2He$$

    $$\Delta m = [2\times 1.00734 + 2\times 1.00874 - 4.0015]$$$$= 0.03066 u$$

    $$B.E = 0.03066\times 931.478 MeV$$$$= 28.56 MeV$$

    $$ B.E \ per\  nucleon = \dfrac{28.56}{4}$$$$= {7.14 MeV}$$
  • Question 7
    1 / -0
    The binding energy of an imaginary iron $$^{56}_{36}Fe$$ is $$\underline{\hspace{0.5in}}$$
    (Given atomic mass of Fe is 55.9349 amu and that of hydrogen is 1.00783 amu. Mass of neutron is 1.00876 amu)
    Solution
    The number of proton of Fe nucleus $$p=36$$ and number of neutron, $$n=56-36=20$$
    The combined mass of nucleus $$=$$ total mass of proton $$+$$ total mass of neutron 
                                                          $$=(36\times 1.00783) +(20\times 1.00876)\\ =56.4571 $$ amu

    Mass defect $$\Delta m=56.457-55.9349=0.522$$ amu
    Binding energy, $$BE={\Delta m c^2}$$  
    So, $$BE=0.522 c^2$$ amu $$=0.522\times 931.49  MeV=486.24$$ MeV  where, $$1 amu = 931.49 MeV/c^2$$
  • Question 8
    1 / -0
    The masses of $$\alpha $$ -particle, proton and neutron are $$4.00150$$ amu, $$1.00728$$ amu and $$1.00867$$ amu respectively. Binding Energy per nucleon of $$\alpha$$ -particle is :
    Solution
    $$2$$ proton, $$2$$ neutron

    $$\Delta m = [2\times 1.00728 + 2\times 1.00867 - 4.00150] amu$$
            $$= 0.0304 amu$$

    $$BE = 0.0304\times 931.478 MeV$$
           $$= 28.32 MeV$$

    Average $$BE = \dfrac{28.32}{4} = 7.08\ MeV$$
  • Question 9
    1 / -0
    The mass defect in $$_{2}He^{3}$$ is $$\underline{\hspace{0.5in}}$$ , if m$$_{p} =$$1.00727 amu, $$m_{n} =$$1.008665 amu, mass of $$_{2}He^{3} =$$3.01664 amu
    Solution
    The difference between atomic weight and mass number i.e. mass of elementary particle in the nucleus is known as mass defect. Since, $$_{3}^{2}\textrm{He}$$ has two protons(atomic number = proton) and one neutron(mass number = proton + neutron). 
    Hence, Mass defect is
    $$\Delta m = [2(m_p) + 1(m_n)] - M_{He}$$
    where, variables have their usual meanings.
    $$\Delta m = [2(1.00727) + 1(1.008665)] - 3.01664$$
    $$\Delta m = [2.01454 + 1.008665] - 3.01664$$
    $$\Delta m = 3.023205 - 3.01664$$
    $$\Delta m = 0.006565 amu$$
    $$\Delta m \approx 0.00657 amu$$
  • Question 10
    1 / -0
    The binding energy of an $$\alpha $$ -particle is
    (Given that mass of proton$$=$$$$1.0073$$ amu, mass of neutron$$=$$ $$1.0087$$ amu, and mass of $$\alpha $$-particle$$=$$$$4.0015$$ amu)
    Solution
    $$\Delta m = (2\times 1.0073 + 2\times 1.0087 - 4.0015)$$
            $$= 0.00305 \mu$$
    $$E = 0.0305\times 931.478 MeV$$
        $$= 28.41\ MeV$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now