Self Studies

Nuclei Test - 24

Result Self Studies

Nuclei Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The binding energy per nucleon of Uranium in $$MeV$$ is 
    (Atomic mass of uranium $$m_{a}=\  238.0508 amu;$$
    Mass of hydrogen atom is$$M_{H}=\  1.0078 amu $$;
    Mass of neutron $$m_{N}=$$ $$1.0087 amu$$; atomic number of Uranium $$Z $$$$=$$ 92; Mass Number of Uranium $$A$$ $$=$$ 238)
    Solution
    No. of protons $$=$$ $$92$$

    No. of neutrons $$= 238 - 92 = 146$$

    $$\Delta m = [92\times 1.0078 + 146\times 1.0087 - 238.0508] amu$$

           $$= 1.937 amu$$

    $$BE = 1.937\times 931.478 MeV$$

           $$= 1804.27 MeV$$

    $$BE/per\ nucleon = \dfrac{1804.27}{238}MeV$$
                                 $$= 7.58MeV$$
  • Question 2
    1 / -0
    The energy required to split $$^{16}_{8}O$$ nucleus into four  $$\alpha $$ particles is $$\underline{\hspace{0.5in}}$$.
    (The mass of an $$\alpha $$ particle is $$4.0026.03 amu$$ and that of oxygen is $$15.994915 amu$$)
    Solution
    $$^{16}_8O \rightarrow 4   ^4_2{He}$$
    $$\Delta m = [4\times 4.002603 - 15.994915] \mu$$
            $$= 0.015497 \mu$$
    $$Q  = \Delta m C^2$$
         $$= 0.015497\times 931.478\ MeV$$
         $$= 14.44 \ MeV$$
  • Question 3
    1 / -0
    The kinetic energy of the $$\alpha $$ - particle emitted in the decay $$^{238}_{94}Pu \rightarrow ^{234}_{92}U + $$ $$^4_2He$$.
    (The atomic masses of $$^{238}Pu, ^{234}U$$ and $$\alpha$$ particle are 238.04955u, 234.04095 u and 4.002603u respectively. Neglect any recoil of the nucleus)

    Solution
    Assuming that energy librated by mass defect is converted into KE of $$\alpha -$$particle.
    $$\Delta m = (238.04955 - 234.04095 - 4.002603) \mu$$
            $$= 0.005997 \mu$$
    $$KE = E = 0.005997\times 931.478\ MeV$$
    $$KE = {5.586} \ MeV$$
  • Question 4
    1 / -0
    The energy released in the following process is :
    $$A + B $$ $$\rightarrow $$$$ C + D +Q$$
    (mass of $$A$$ is $$1.002$$ amu ; mass of $$B$$ is $$1.004$$ amu ;mass of $$C$$ is $$1.001$$ amu ; mass of $$D$$ is $$1.003$$ amu)
    Solution
    $$\Delta m = [1.002 + 1.004 - 1.001 - 1.003]$$
           $$ = 0.002 \mu$$

    $$E = Q = 0.002\times 931.478 MeV$$
        $$= 1.862 MeV$$
  • Question 5
    1 / -0
    Mass of proton $$= 1.00760 amu$$, mass of neutron $$= 1.00899 amu$$, mass of deuterium nucleus $$=2.0147 amu$$. Then binding energy is :
    Solution
    $$^2_1H \rightarrow 1 proton + 1 neutron$$

    $$\Delta m = [1.0076 + 1.00899 + 2.0147]$$
            $$= 0.00189 \mu$$

    $$E = 0.00189\times 931.478 MeV$$
        $$= 1.76 MeV$$
  • Question 6
    1 / -0
     In nuclei with mass number greater than $$20$$, the average binding energy is:
    Solution
    The binding energy per nucleon Vs number of nucleon curve suggests that average binding is almost $$8\ MeV$$ for the nuclei having mass number greater than $$20$$.

  • Question 7
    1 / -0
    $$_{3}Li^{7}+_{1}H^{2}\rightarrow _{4}Be^{8}+_{o}n^{1}+Q$$
    Mass of $$_{3}Li^{7}=$$ $$7.01823amu$$
    Mass of $$_{1}H^{2}=$$ $$2.01474amu$$
    Mass of $$_{4}Be^{8}=$$$$8.00785 amu$$
    Mass of $$_{o}n^{1}=$$ $$1.00899 amu$$
    Then, the value of Q is
    Solution
    Mass of reactants is: $$7.01824 + 2.01474 = 9.03297\ amu$$
    Mass of products is: $$8.00785 + 1.00899 = 9.01684\ amu$$
    The difference in mass $$= 0.01613\ amu$$. (This mass has been converted to energy).
    $$1 amu = 1.67 \times 10^{-27} kg$$
    Hence, mass difference is $$= 0.01613 \times  1.67 \times  10^{-27} kg = 2.69371 \times  10^{-29} kg$$
    Using Einstein's relation:
    $$E = mc^{2}$$
    $$E = 2.69371 \times  10^{-21} \times  (3 \times  10^{8})^{2}  = 2.42 \times  10^{-12} J$$
    $$E = 15\ MeV$$
  • Question 8
    1 / -0
    The mass defect and binding energy of $$^{12}_{6}$$C nucleus is
    (Mass of $$^{12}_{6}$$ C $$=$$12.000000 amu; $$m_{p}=$$1.007825 amu and $$m_{n}=$$1.008665 amu)
    Solution
    C $$=$$ 6 neutrons + 6 protons
    $$\Delta m = (6\times 1.007825 + 6\times 1.008665 - 12)$$
           $$= 0.09894 \ amu$$
    $$E = (0.09894\times 931.478 \dfrac{MeV}{C^2})C^2$$
        $$= 92.1 MeV$$
  • Question 9
    1 / -0
    The binding energy  per  nucleon of $$^{40}_{20}Ca$$ is $$\underline{\hspace{0.5in}}$$
    ($$^{40}_{20}Ca =$$39.962589 amu, $$m_{p} =$$1.007825 amu; $$m_{n}=$$$$1.008665 amu$$ and $$1amu$$ is equivalent to $$931.5 MeV$$)
    Solution
    $$\Delta m = [20\times 1.007825 + 20\times 1.008665 - 39.962589] \mu$$
            $$= 0.367211 \mu$$

    $$BE = 0.367211\times 931.478 MeV$$
           $$= 342.045 MeV$$

    BE per nucleon $$= \dfrac{BE}{40} = 8.55\ MeV$$
  • Question 10
    1 / -0
    The binding energy per nucleon of $$^{35}_{17}Cl$$ nucleus is 
    ($$^{35}_{17}Cl =$$34.98000 amu, $$m_{P}=$$1.007825 amu,$$m_{n} =$$1.008665 amu and 1 amu is equivalent to 931MeV)
    Solution
    In $$Cl$$ there are $$17$$ protons and $$(35 - 17)$$ $$=$$ 18 neutrons.

    $$\Delta m = [17\times 1.007825 + 18\times 1.008665 - 34.98] amu$$

            $$= 0.308995$$

    $$BE = 0.308995\times 931.478 MeV$$

           $$= 287.82 MeV$$

    $$\dfrac{BE}{nucleon} = \dfrac{287.82}{35} = 8.22\ MeV$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now