Self Studies

Nuclei Test - 66

Result Self Studies

Nuclei Test - 66
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the uranium radioactive series the initial nucleus is $$_{92} U^{238},$$ and the final nucleus is $$_{82} U^{206}.$$ When the Uranium nucleus decays to lead, the number of $$\alpha-particles$$ emitted are... and the number of $$\beta-particles$$ emitted are...
    Solution
    $$\begin{array}{l}\text { For each. } \alpha \text { -decay Mass number } \\\text { decreases by }{ }^{\prime\prime} 4^{\prime \prime} \text { and } Z \text { by " } 2^{\prime \prime} \\238 \longrightarrow 206\end{array}$$


    $$\begin{array}{l}\text { Decrease in mass aumber is }{ }^{\prime\prime} 32^{\prime \prime} \\\text { Let number of }{ }^{\prime \prime} \alpha^{\prime \prime} \text { particles and }\\^{\prime\prime} \beta^{\prime \prime} \text { particles emitted be " } x^{\prime \prime} \text { and "y" } \\\qquad \begin{array}{c}4 x=32\\x=8\end{array}\end{array}$$


    $$\begin{array}{l}\therefore \text { No. of } \alpha \text { -particles emitted will be } 8. \\\text { Now, due to this emission } z \text { decrease } \\\text { by } 16. \\\qquad \therefore \quad z=76 \\\quad 76\rightarrow 82 \\\therefore \quad y=6 \\\text { No of } \beta \text { -particles emitted is " } 6 ".\end{array}$$
  • Question 2
    1 / -0
    A radioactive nucleus $$_ZX^A$$ emits $$3 \alpha$$-particles and $$5 \beta$$-particles. The ratio of number of neutron, protons in the product nucleus will be :- 
    Solution
    The new mass number after emission of $$3$$ alpha particles will be $$A-3\times 4=A-12$$
    the new atomic number  after emission of $$3$$ alpha particles will be $$Z-3\times2=Z-6$$
    and after emission of $$5$$ beta particles, this will become $$Z-6 +5\times 1=Z-1$$

    so the number of $$neutrons $$ in the new nucleus will be $$A-12-(Z-1)=A-Z-11$$
    and the number of $$protons $$ in the new nucleus will be $$(Z-1)$$
    the required ration will be $$\dfrac{n}{p}=\dfrac{A-Z-11}{Z-1}$$

  • Question 3
    1 / -0
    A nucleus of mass $$M$$ is at rest. An alpha particle of mass $$m$$ is emitted from the nucleus with momentum $$P. Q$$ value of the nuclear reaction is :
    Solution
    $$ \begin{array}{l} \text { Given, } \\ \text { nucleus of mass }=M \\ \text { mass of } \alpha \text { particle }=m \\ \text { momentem of } \alpha \text { -particle }=P \\ \therefore K E \text { of } \alpha \text { panticle }=\dfrac{p^{2}}{2 m} \end{array} $$ 
    $$ \begin{array}{l} \text { We know relation, } \\ \text { when } \alpha \text { paticle decay take place } \\ \qquad(K E)_{\alpha}=Q\left(\dfrac{A-\text { (mass of } \alpha )}{A}\right) \end{array} $$ 
    $$ Q=\dfrac{p^{2} M}{2 m(M-m)} $$
  • Question 4
    1 / -0
    $$\begin{array} { l } { \text { Initial ratio of active nuclei in two different samples } } \\ { \text { is } 2 : 3 . \text { Their half lives are } 2 \text { hr and } 3 \text { hr respectively. } } \\ { \text { Ratio of their activities at the end of } 12 \text { hr is: } } \end{array}$$
    Solution

  • Question 5
    1 / -0
    In which sequence the radioactive radiations are emitted in the following nuclear reaction?
    $$_{Z}X^{A} \rightarrow _{Z+1}Y^{A} \rightarrow _{Z-1}K^{A-4}  \rightarrow _{Z-1}K^{A-4}$$
    Solution

  • Question 6
    1 / -0
    $$\begin{matrix} M \\ Z \end{matrix}A(g)\longrightarrow \begin{matrix} M-B \\ Z-4 \end{matrix}B(g)+(\alpha -particals)$$
    ($$\alpha$$-particales are helium nuclei,so will form helium gas by trapping electrons)
    The radioactive disintegration follows first-order kinetic Starting with 1 mol of A in a 1-litre closed flask at $$27^oC$$ pressure developed after two half-lives is approximately:
    Solution

  • Question 7
    1 / -0
    If the binding energy per nucleon in $$ ^7_3Li and ^4_2 He $$  nuclei are 5.60 MeV and 7.06 MeV respectively, then in the reaction
       $$ p + ^7_3 Li \rightarrow 2^4_2 He $$
    energy of proton must be :
    Solution

  • Question 8
    1 / -0
    Ratio of energy produced by fusion of 1.0 kg of hydrogen (as it occurs in sun) and energy produced by fission of 1 kg of $$^{235}_{92}{U}$$ in a nuclear reactor is nearly 
    Solution

  • Question 9
    1 / -0
    Two isotopes P and Q of atomic weight 10 and 20, respectively are mixed in equal amount by weight. After 20 days their weight ratio is found to be 1 : 4. Isotope P has a half-life of 10 days. The half-life of isotope Q is
    Solution
    Let Wg of each be taken initid modes of P 
    $$\begin{array}{l} =\frac { W }{ { 10 } }  \\ \emptyset =\frac { W }{ { 20 } }  \\ FindP=\frac { { { W_{ 1 } } } }{ { 5\times 10 } }  \\ \emptyset =\frac { { 4{ W_{ 1 } } } }{ { 20\times 5 } }  \\ \therefore for\, \, { P_{ 1 } }\frac { { W\times 5\times 10 } }{ { 10{ W_{ 1 } } } } ={ \ell ^{ \times P\times 20 } }\to (i) \\ for\, \, \emptyset { { 1pt }_{ 1 } }\frac { { W\times 20\times 5 } }{ { 20\times { W_{ 1 } }\times 4 } } ={ \ell ^{ \lambda \emptyset \times 20 } }\to (ii) \\ from\, \, \left( 1 \right) \, \& \, \, \left( 2 \right)  \\ 4{ \ell ^{ \left( { \lambda P-\lambda \emptyset  } \right) \times 20 } } \\ 20\left( { \lambda P-\lambda \emptyset  } \right) =\log { e^{ 4 } }  \\ 20\left( { \frac { { 0.693 } }{ { { t_{ \frac { 1 }{ 2 }  } } } } -\frac { { 0.693 } }{ { 10 } }  } \right) =\log { e^{ 4 } }  \\ { t_{ \frac { 1 }{ 2 }  } }=5 \end{array}$$
  • Question 10
    1 / -0
    The nuclear reaction $$1H^2 + 1H^2 \rightarrow 2He^4$$ (mass of $$deuteron=2.0141$$ amu and of $$He=4.0024$$ amu) is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now