`
Self Studies

Perimeter and Area Test - 16

Result Self Studies

Perimeter and Area Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the circumference of a circle is $$352$$ metres, then its area (approx)in $$\text{ m }^{ 2 }$$ is
    Solution

  • Question 2
    1 / -0
    Find the circumference of the circle with the following radius : 10 cm
    Solution
    Radius, r = 10 cm
    We know, Circumference = $$2\pi r = 2 \times \pi \times 10 =20 \pi \ cm$$
  • Question 3
    1 / -0
    The area of circle with radius $$24\ cm$$ is 
    Solution
    The radius of circle = $$24\ cm$$
    The area of circle of radius $$r = \pi r^2$$
    $$\therefore $$ Required area = $$π \times {24}^2\ cm^2 = 576 \pi\ cm^2$$
  • Question 4
    1 / -0
    Circumference of a circle is always
    Solution
    Option (a) is correct.
    As we know [bat Circumference of a circle $$ 2 \times 3.14 \times r$$
    $$\Rightarrow circumference  = 3.14 \times d$$
    Therefore, Circumference of a circle is more than three of its diameter.
  • Question 5
    1 / -0
    If the radius of a circle is tripled, The area becomes
    Solution
    Let the radius of the circle be $$r$$. 
    So Area $$=A=\pi r^2$$
    If radius is tripled, then radius becomes $$3r$$.

    Now, area of circle $$A'=\pi(3r)^2 =9\pi r^2=9A$$
    Therefore. if the radius of a circle is tripled, the area becomes $$9\ times$$.
  • Question 6
    1 / -0
    Circumference of a circle disc is $$88\, cm$$. Its radius is.
    Solution
    Option (c) is correct.
    We know that.
    Circumference $$= 2\pi r =88$$
    $$\Rightarrow  88=2\times \dfrac {22}{7} \times r$$

    $$\Rightarrow r=\dfrac {88\times 7}{2\times 22}$$

    $$\Rightarrow r= 14\, cm$$
     Therefore, $$14\,cm$$ is the radius.
  • Question 7
    1 / -0
     If $$1m^2 = x\, mm^2$$, then the value of x is.
    Solution
    We know that $$1m = 1000mm$$, then $$1m^2 = (1000)^2 mm$$
    Option (d) is correct.
    Given, $$1\,m^2= x\, mm^2$$
    $$\Rightarrow  (1000\,mm)^2 = x\,mm ^2$$
    $$\Rightarrow x =1000000$$
  • Question 8
    1 / -0
    Area of a circle with diameter $$m$$, radius $$n$$ and circumference $$p$$ is
    Solution
    Option (d) is correct.
    Given,
    Diameter $$= m$$
    Radius $$= n$$, 
    Circumference $$= p$$.
    Therefore, area of circle $$= \pi r^2=\pi n^2$$
  • Question 9
    1 / -0
    Circumference of a circle of diameter  $$5 \, cm$$ is
    Solution
    Option (c) is correct. Given,
    Diameter $$= 5 \,cm$$
    Hence. Radius  $$=\dfrac {5}{2}\, cm$$

    Now. circumference $$ = 2\pi r = 2\times \dfrac {22}{7}\times \dfrac {5}{2}$$
    $$=\dfrac {110}{7}= 15.7\, cm$$
  • Question 10
    1 / -0
    If the sum of the areas of two circles with radii $$R_1$$ and $$R_2$$ is equal to the area of a circle of radius R, then
    Solution
    $$ ar.circle\quad with\quad radius\quad { R }_{ 1 }=\pi { { R }_{ 1 } }^{ 2 }\quad and\\ ar.circle\quad with\quad radius\quad { R }_{ 2 }=\pi { { R }_{ 2 } }^{ 2 }.\\ \therefore \quad sum\quad of\quad the\quad areas=\pi \left( { { R }_{ 1 } }^{ 2 }+{ { R }_{ 2 } }^{ 2 } \right) .\\ \quad Again\quad ar.circle\quad with\quad radius\quad R=\pi { { R } }^{ 2 }.\\ \therefore \quad By\quad the\quad given\quad condition\quad \pi \left( { { R }_{ 1 } }^{ 2 }+{ { R }_{ 2 } }^{ 2 } \right) =\pi { { R } }^{ 2 }\\ \Longrightarrow \left( { { R }_{ 1 } }^{ 2 }+{ { R }_{ 2 } }^{ 2 } \right) ={ { R } }^{ 2 }.\\ Ans-\quad Option\quad B.\\ $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now