Self Studies

Perimeter and Area Test - 16

Result Self Studies

Perimeter and Area Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the circumference of a circle is 352352 metres, then its area (approx)in  m 2\text{ m }^{ 2 } is
    Solution

  • Question 2
    1 / -0
    Find the circumference of the circle with the following radius : 10 cm
    Solution
    Radius, r = 10 cm
    We know, Circumference = 2πr=2×π×10=20π cm2\pi r = 2 \times \pi \times 10 =20 \pi \ cm
  • Question 3
    1 / -0
    The area of circle with radius 24 cm24\ cm is 
    Solution
    The radius of circle = 24 cm24\ cm
    The area of circle of radius r=πr2r = \pi r^2
    \therefore Required area = π×242 cm2=576π cm2π \times {24}^2\ cm^2 = 576 \pi\ cm^2
  • Question 4
    1 / -0
    Circumference of a circle is always
    Solution
    Option (a) is correct.
    As we know [bat Circumference of a circle 2×3.14×r 2 \times 3.14 \times r
    circumference =3.14×d\Rightarrow circumference  = 3.14 \times d
    Therefore, Circumference of a circle is more than three of its diameter.
  • Question 5
    1 / -0
    If the radius of a circle is tripled, The area becomes
    Solution
    Let the radius of the circle be rr
    So Area =A=πr2=A=\pi r^2
    If radius is tripled, then radius becomes 3r3r.

    Now, area of circle A=π(3r)2=9πr2=9AA'=\pi(3r)^2 =9\pi r^2=9A
    Therefore. if the radius of a circle is tripled, the area becomes 9 times9\ times.
  • Question 6
    1 / -0
    Circumference of a circle disc is 88cm88\, cm. Its radius is.
    Solution
    Option (c) is correct.
    We know that.
    Circumference =2πr=88= 2\pi r =88
     88=2×227×r\Rightarrow  88=2\times \dfrac {22}{7} \times r

    r=88×72×22\Rightarrow r=\dfrac {88\times 7}{2\times 22}

    r=14cm\Rightarrow r= 14\, cm
     Therefore, 14cm14\,cm is the radius.
  • Question 7
    1 / -0
     If 1m2=xmm21m^2 = x\, mm^2, then the value of x is.
    Solution
    We know that 1m=1000mm1m = 1000mm, then 1m2=(1000)2mm1m^2 = (1000)^2 mm
    Option (d) is correct.
    Given, 1m2=xmm21\,m^2= x\, mm^2
     (1000mm)2=xmm2\Rightarrow  (1000\,mm)^2 = x\,mm ^2
    x=1000000\Rightarrow x =1000000
  • Question 8
    1 / -0
    Area of a circle with diameter mm, radius nn and circumference pp is
    Solution
    Option (d) is correct.
    Given,
    Diameter =m= m
    Radius =n= n
    Circumference =p= p.
    Therefore, area of circle =πr2=πn2= \pi r^2=\pi n^2
  • Question 9
    1 / -0
    Circumference of a circle of diameter  5cm5 \, cm is
    Solution
    Option (c) is correct. Given,
    Diameter =5cm= 5 \,cm
    Hence. Radius  =52cm=\dfrac {5}{2}\, cm

    Now. circumference  =2πr=2×227×52 = 2\pi r = 2\times \dfrac {22}{7}\times \dfrac {5}{2}
    =1107=15.7cm=\dfrac {110}{7}= 15.7\, cm
  • Question 10
    1 / -0
    If the sum of the areas of two circles with radii R1R_1 and R2R_2 is equal to the area of a circle of radius R, then
    Solution
     ar.circlewithradiusR1=πR12andar.circlewithradiusR2=πR22.sumoftheareas=π(R12+R22).Againar.circlewithradiusR=πR2.Bythegivenconditionπ(R12+R22)=πR2(R12+R22)=R2.AnsOptionB. ar.circle\quad with\quad radius\quad { R }_{ 1 }=\pi { { R }_{ 1 } }^{ 2 }\quad and\\ ar.circle\quad with\quad radius\quad { R }_{ 2 }=\pi { { R }_{ 2 } }^{ 2 }.\\ \therefore \quad sum\quad of\quad the\quad areas=\pi \left( { { R }_{ 1 } }^{ 2 }+{ { R }_{ 2 } }^{ 2 } \right) .\\ \quad Again\quad ar.circle\quad with\quad radius\quad R=\pi { { R } }^{ 2 }.\\ \therefore \quad By\quad the\quad given\quad condition\quad \pi \left( { { R }_{ 1 } }^{ 2 }+{ { R }_{ 2 } }^{ 2 } \right) =\pi { { R } }^{ 2 }\\ \Longrightarrow \left( { { R }_{ 1 } }^{ 2 }+{ { R }_{ 2 } }^{ 2 } \right) ={ { R } }^{ 2 }.\\ Ans-\quad Option\quad B.\\
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now