Self Studies

Perimeter and Area Test - 23

Result Self Studies

Perimeter and Area Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is the area of a figure formed by a square of side 8 cm and an isosceles triangle with the base as one side of the square and the other equal sides as 5 cm?

    Solution

    Construction: Draw EF perpendicular to AB which will act as a median.
    From figure:
    Area of given figure$$=ar\triangle ABE+ar \ \square ABCD$$

    Now, $$ar\triangle ABE=2\times ar\triangle AFE$$       {$$\because$$ its an isosceles triangle, therefore, EF will act as the median}

    $$\triangle AFE$$ is a right-angled triangle, so by Pythagoras theorem

    $$EF=\sqrt { A{ E }^{ 2 }+A{ F }^{ 2 } } $$ 

         $$=\sqrt { { \left( 5 \right)  }^{ 2 }+{ \left( 4 \right)  }^{ 2 } } =\sqrt { 9 } =3cm$$

    $$\therefore ar\triangle AFE=\cfrac { 1 }{ 2 } \times $$ base $$\times $$ height

    $$=\cfrac { 1 }{ 2 } \times 4\times 3=6cm^2$$

    $$\therefore ar\triangle ABE=2\times 6=12cm^2$$

    Also, area of square $$ABCD = (8\times 8) cm^2$$

    Now, area of figure$$=12+{ (8) }^{ 2 }=76cm^2$$

  • Question 2
    1 / -0
    The perimeter of an equilateral triangle and a square are same then $$\displaystyle \frac{area\,  of \Delta }{area\, of\ \square }=$$
    Solution
    Let side of equilateral $$\triangle =a$$
    Side of square$$=b$$
    Since, perimeter of triangle = perimeter of square
    $$\therefore 3a=4b\Rightarrow \cfrac { a }{ b } =\cfrac { 4 }{ 3 } $$

    $$\therefore \cfrac { ar\triangle  }{ ar\triangle  } =\cfrac { \cfrac { \sqrt { 3 }  }{ 4 } \times { a }^{ 2 } }{ { b }^{ 2 } } =\cfrac { \sqrt { 3 }  }{ 4 } \times { \left( \cfrac { a }{ b }  \right)  }^{ 2 }=\cfrac { \sqrt { 3 }  }{ 4 } \times \cfrac { 16 }{ 9 } =\cfrac { 4 }{ 3\sqrt { 3 }  } <1$$
  • Question 3
    1 / -0
    A square and a rectangular field with measurements as given in the following figure have the same perimeter. Which field has a larger area?

    Solution
    Let $$x$$ be the breadth of the rectangle.
     It is given that the perimeter of a rectangle = perimeter of the square.
    $$\therefore\;2(80+x)=4\times60$$
    $$\Rightarrow\; 80+x=120$$
    $$\Rightarrow\;x=120-80=40$$
    i.e. breadth of the rectangle $$=40\;m$$
    Now, Area of the square $$=(60\times60)\;m^2$$
    $$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=3600\;m^2$$.
    and the area of the rectangle $$=(40\times80)\;m^2$$.
    $$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=3200\;m^2$$.
    Hence, the square field has a larger area.
  • Question 4
    1 / -0
    The radius of a circle is $$14 m$$, then the circumference of a circle is
    Solution
    $$r =14 m$$
    Circumference = $$2\pi r$$
    $$=\, 2\, \times\, \displaystyle \dfrac {22}{7}\, \times14\, =\, 88\, m$$
  • Question 5
    1 / -0
    The area of a parallelogram is $$120$$  $$cm^{2}$$ and its altitude is $$10$$ cm. The length of the base is
    Solution
    $$Area of parallelogram$$ 
    = $$Base \times height = 120 cm^{2}$$.
    $$Base=\cfrac{120}{10}$$
    $$\therefore $$  Base = $$12 cm$$
  • Question 6
    1 / -0
    Find the area of the unshaded portion of figure, the shaded portions being semi-circular regions.

    Solution
    Area of unshaded portion $$=$$ Area of rectangle - Area of circle
                                                $$=$$ $$l\times b-\pi { r }^{ 2 }$$
                                                $$=$$ $$14$$$$\times 10-\dfrac { 22 }{ 7 } \times 3.5\times 3.5$$
                                                $$=$$ $$140 - 38.5$$
                                                $$=$$ $$101.5$$ $${ m }^{ 2 }$$
  • Question 7
    1 / -0
    The circumference of a circle is $$44 m$$, then the area of the circle is
    Solution
    Circumference of circle $$(C) = 2\pi r\, =\, 44$$

    $$\therefore r\, =\, \displaystyle \frac {44}{2\, \times\, \displaystyle \frac {22}{7}}\, = \dfrac {44 \times 7}{2 \times 22} = 7\, m$$

    Area of a circle $$=\, \pi r^2$$

    $$=\, \displaystyle \frac {22}{7}\, \times\, 7\, \times\,7\, =\, 154\, m^2$$
  • Question 8
    1 / -0
    The area of a circle is $$2464 m^2$$, then the diameter is
    Solution
    By given, Area =$$2464m^2$$
     $$\displaystyle \frac {\pi d^2}{4}\, =\, 2464$$
    $$d^2\, =\, \displaystyle \frac {2464\, \times\, 4}{\displaystyle \frac {22}{7}}\, =\, 3136$$
    $$d\, =\, \sqrt {3136}\, =\, 56$$m
  • Question 9
    1 / -0
    Abhay made a straight cut through a circular rubber band and then laid the rubber band flat, as shown in the figure.
    Which measure corresponds to the length of the cut rubber band ?

    Solution
    Circumference of the rubber band is equal to the length of the cut rubber band .
    Hence option B is answer
  • Question 10
    1 / -0
    The inner diameter of a circular building is $$54 cm$$ and the base of the circular wall occupies a space of $$\displaystyle 2464cm^{2}$$. The thickness of the wall is: 
    Solution
    Let the outer radius of the wall be $$R$$ cm.

    Base of the wall is circular in shape with R as its radius. 

    Given, $$ \pi { R }^{ 2 }  = 2464 $$

    $$ => { R }^{ 2 }  = \cfrac {2464 \times 7}{22} \\\ \ \ \ \ \ \ \ \ \ \ =  784 $$ 

    $$ => R = 28   cm $$

    Inner Radius, $$ r= \cfrac {54}{2} = 27  cm $$ 

    Hence, thickness $$ = $$ Outer radius $$ - $$ Inner Radius 
                                $$ = 28 - 27 \\= 1  cm $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now