Self Studies

Perimeter and Area Test - 32

Result Self Studies

Perimeter and Area Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the circumference of a circle is $$60$$ cm more than its diameter, then the circumference is?
    Solution
    Given: Circumference of circle $$=60+$$ Diameter

    $$\Rightarrow 2\pi r=60+2r$$

    $$\Rightarrow$$ $$2\times \displaystyle\frac{22}{7}\times r=60+2r$$

    $$\Rightarrow$$ $$\displaystyle\frac{22}{7}\times r=30+r$$

    $$\Rightarrow$$ $$30=\displaystyle\frac{22}{7}r-r$$

    $$\Rightarrow$$ $$30=\displaystyle\frac{15r}{7}$$

    $$\Rightarrow r=14$$

    Hence circumference $$=2\pi r$$

                                         $$=2\times \dfrac{22}{7} \times 14$$

                                         $$=88$$
  • Question 2
    1 / -0
    The length of a rectangle is $$\left( \cfrac { 6 }{ 5 }  \right) $$th of its breadth. It its perimeter is $$132m$$, its area will be ______ .
    Solution
    $$\Rightarrow$$  Let breadth of a rectangle be $$x$$.
    $$\Rightarrow$$  Then length of a rectangle be $$\dfrac{6}{5}x$$.
    $$\Rightarrow$$  Perimeter of a rectangle = $$2(length+breadth)$$
    $$\therefore$$    $$132=2(\dfrac{6}{5}x+x)$$

    $$\therefore$$    $$66=\dfrac{6+5}{5}x$$

    $$\therefore$$   $$x=66\times \dfrac{5}{11}$$
    $$\therefore$$   $$x=30\,m$$
    $$\Rightarrow$$  So, breadth = $$30\,m$$ and length = $$\dfrac{6}{5}\times 30=36\,m$$
    $$\Rightarrow$$  Area of rectangle = $$length\times breadth$$
    $$\therefore$$    Area of rectangle = $$36\times 30=1080\,m^2$$
  • Question 3
    1 / -0

    Ishika has designed a small oval race track for her remote control car. Her design is shown in the figure. What is the total distance around the track? Round your answer to the nearest whole cm.

    Solution
    Total distance around the track $$=$$ Perimeter of the given track 

    The track is a combination of a rectangular path and two semi-circular paths.

    Hence perimeter of the given track $$= 52 + 52 + 2\pi r$$

                                                                $$= 52 + 52 + 2\times \dfrac {22}{7}\times 16$$

                                                                $$= 104 + 100.57$$

                                                               $$ = 204.57 \approx 205\ cm$$.
  • Question 4
    1 / -0
    The number of envelopes that can be made out of sheet of paper $$384cm$$ by $$172cm$$ if each envelope requires a piece of paper of size $$16cm$$ by $$12cm$$, is _________ .
    Solution
    $$\Rightarrow$$  Length and breadth of a sheet is $$384\,cm$$ and $$172\,cm$$.
    $$\Rightarrow$$  Area of a sheet = $$length\times breadth$$
    $$\therefore$$  Area of a sheet = $$384\,cm\times 172\,cm=66048\,cm^2$$
    $$\Rightarrow$$  Length of a envelope is $$16\,cm$$ and breadth is $$12\,cm$$
    $$\Rightarrow$$   Area of envelope = $$length\times breadth$$
    $$\therefore$$  Area of a envelope = $$16\,cm\times 12\,cm=192\,cm^2$$
    $$\Rightarrow$$  $$Number\, of\, envelopes = \dfrac{Area\,of\,sheet}{Area\,of\,envelope}$$

    $$\therefore$$  $$Number\, of\, envelopes =\dfrac{66048}{192}=344$$
  • Question 5
    1 / -0
    The area of a square is numerically equal to the perimeter of the square, then the side of square is ______ .
    Solution
    $$\Rightarrow$$  Let $$'s'$$ be the side of the square.
    $$\rightarrow$$  According to the given condition,
    $$\Rightarrow$$  $$Area\,of\,square=Perimeter\,of\,square$$
    $$\Rightarrow$$  $$s^2=4s$$
    $$\therefore$$    $$s=4.$$
    $$\therefore$$   Side of square is $$4\,units.$$
  • Question 6
    1 / -0
    All the figures given below consist of the four squares of equal size. Which figure has the smallest perimeter?
    Solution
    $$\Rightarrow$$  We have given that Four squares in diagram has equal size.
    $$\Rightarrow$$  Let the each square be $$1\times 1$$ unit square.
    $$\Rightarrow$$  Perimeter of Option A diagram = $$1+1+1+1+1+1+1+1=8$$
    $$\Rightarrow$$  Perimeter of Option B diagram = $$1+1+1+1+1+1+1+1+1+1=10$$
    $$\Rightarrow$$  Perimeter of Option C diagram = $$1+1+1+1+1+1+1+1+1+1=10$$
    $$\Rightarrow$$  Perimeter of Option D diagram = $$1+1+1+1+1+1+1+1+1+1=10$$
    $$\therefore$$    Option $$A$$ diagram has the smallest perimeter.
  • Question 7
    1 / -0
    What is the perimeter of the shaded area in the given figure?

  • Question 8
    1 / -0
    The length of a plot is 45 m and breadth is 35 m . Find the cost of fencing it at Rs. 20 per m
    Solution
    L=$$45 $$m , B=$$35$$ m
    Perimeter of rectangle =$$ 2(L+B)$$
    = $$2\times(45+35)$$=$$2\times(80)$$=$$160$$
    Cost of fencing is $$Rs.20$$ per m
    Cost of fencing the plot=$$20\times160$$=$$Rs.3200$$

  • Question 9
    1 / -0
    Of the following statements, the one that is incorrect is:
    Solution
    We know, Area of circle $$A=\pi r^2$$

                      When the radius is doubled, $$R=2r$$

                      Then, New area $$=\pi R^2$$

                                                  $$=\pi (2r)^2$$

                                                  $$=4A$$

    Area of a circle is directly proportional to square of its radius, so doubling radius will quadruple its area.
  • Question 10
    1 / -0
    If a bicycle wheel makes $$5000$$ revolution in moving $$11$$ km, then diameter of wheel is
    Solution
    Let radius of wheel be $$r㎝$$. Then, distance travel in $$1$$ revolution$$=2\pi r$$
    Total distance$$=11㎞=1100m=1100000㎝$$
    Total revolutions$$=5000$$
    $$\Rightarrow 5000\times 2\pi r=1100000\Rightarrow r=\cfrac { 1100000\times 7 }{ 2\times 22\times 5000 } =35㎝$$
    $$\therefore $$Diameter of wheel $$=2\times 35=70㎝$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now