Self Studies

Perimeter and Area Test - 34

Result Self Studies

Perimeter and Area Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A race track is in the form of  ring whose inner and outer circumstances are $$352\ meters$$ and $$396\ meters$$ respectively. Find the width of the track.
    Solution
    Let, $$R, r $$ be the outer and inner radius of the track then,
    $$2\pi R = 396 \ m$$
    $$2\pi r = 352 \ m $$

    Now , $$2\pi R - 2\pi r = 396 - 352$$

    $$\implies 2\pi (R - r) = 44 $$

    $$\implies 2\times \dfrac{22}{7} \times (R - r) = 44 $$

    $$\implies R - r = 44 \times \dfrac{7}{44}$$

    $$\therefore R - r = 7 \ m $$

    i.e., The width of the track $$ = 7 \ m $$

    Option A is correct.

  • Question 2
    1 / -0
    If the area of a parallelogram is $$144 \operatorname { cm } ^ { 2 }$$ and its base is $$9 cm$$. then its height is 
    Solution
    Area of parallelogram $$= $$ base$$\times$$ height

    Given : base $$=9\ cm,$$  
                 area $$=144\ cm^2$$
                 Let height be $$h$$

    $$\Rightarrow$$ $$144\ {cm}^{2}=9cm\times h$$

    $$\Rightarrow$$ $$h$$$$=\cfrac{144\ {cm}^{2}}{9\ cm}$$

    $$\therefore$$ $$h=16\ cm$$
  • Question 3
    1 / -0
    If the circumference of a circle is 88 cm, then the area of a circle (in sq. cm) is:
    Solution
    Given,

    Circumference of the circle,

    $$2\pi r=88$$

    $$\therefore r=\dfrac{44}{\pi}=14$$

    Area of circle,

    $$A=\pi r^2$$

    $$=\pi \times 14^2$$

    $$=196 \pi$$
  • Question 4
    1 / -0
    The area of a circle whose diameter is 1.4 cm is 
    Solution
    Area of cirlce

    $$=\pi r^2$$

    $$=\pi \left ( \dfrac{d}{2} \right )^2$$

    $$=\dfrac{22}{7} \left ( \dfrac{1.4}{2} \right )^2$$

    $$=1.54m^2$$

  • Question 5
    1 / -0
    Find the circumference of the circles with the radius 14cm :$$(Take \ \pi = \frac{22}{7})$$ 
    Solution
    Circumference  $$ = 2\pi r $$
    $$ r = 14 \,cm $$
    $$ = 2\pi r = 2\times \frac{22}{7}\times 14 $$
    $$ = 2\times 22\times 2 $$ 
    $$ = 4\times 22 $$
    $$ = 88 \,cm $$
  • Question 6
    1 / -0
    An ant is moving around a few food pieces of different shapes scattered on the floor. For which food-piece would the ant have to take a longer round? Remember, circumference of a circle can be obtained by using the expression $$c =2\pi r$$, where r is the radius of the circle.
    Solution
    $$(a)$$Diameter$$=2.8$$cm$$\Rightarrow$$Radius$$=\dfrac{2.8}{2}=1.4$$cm
    Perimeter of a circle$$=2\pi r\Rightarrow $$ Perimeter of a semicircle$$=\dfrac{2\pi r}{2}=\pi r$$
    $$\therefore$$ Perimeter of the figure$$=\pi r+$$ diameter
    $$=\dfrac{22}{7}\times\dfrac{14}{10}+2.8$$cm
    $$=4.4+2.8=7.2$$cm

    $$(b)$$Perimeter of the semi-circular part$$=\pi r$$
    $$=\dfrac{22}{7}\times 1.4$$cm
    $$=4.4$$cm
    Perimeter of the remaining part$$=1.5+2.8+1.5=5.8$$cm
    Total perimeter$$=4.4+5.8=10.2$$

    $$(c)$$Perimeter of the semi-circular part$$=\dfrac{\pi d}{2}=\dfrac{22}{7}\times \dfrac{2.8}{2}=4.4$$cm
    $$\therefore$$ Perimeter of the figure$$=4.4+2+2=8.4$$cm
    Since,$$7.2$$cm$$<8.4$$cm$$<10.2$$cm
    $$\therefore$$ perimeter of figure $$b$$ has the longest round.
  • Question 7
    1 / -0
    Find the area of circle whose circumference is $$220cm$$
    Solution
    Circumference of circle $$=220\,cm$$              [ Given ]
    Circumference of circle $$=2\pi r$$
    $$\Rightarrow$$  $$220=2\times\dfrac{22}{7}\times  r$$

    $$\Rightarrow$$  $$r=220\times \dfrac{7}{22}\times\dfrac{1}{2}$$

    $$\Rightarrow$$  $$r=5\times 7$$

    $$\therefore$$  $$r=35\,cm^2$$

    $$\Rightarrow$$  Area of circle $$=\pi r^2$$

                                  $$=\dfrac{22}{7}\times 35\times 35$$

                                  $$=22\times 5\times 35$$

                                  $$=3850\,cm^2$$
  • Question 8
    1 / -0
    The area of parallelogram if the base is $$36cm$$  and height is $$45cm$$
    Solution
    The base of parallelogram is $$36cm$$
    The height is $$45cm$$
    The area of parallelogram is $$36\times 45=1620cm^2$$
  • Question 9
    1 / -0
    The area of the concentric circles are $$962.5\ cm^{2}$$ and $$1368\ cm^{2}$$. Find the width of the ring formed by them. 
    Solution
    Let the radii of the bigger and smaller circles be $$R\space\mathrm{cm}$$ and $$r \space\mathrm{cm}$$, respectively.
    Now, Area of the bigger circle $$=\pi R^2$$
    $$\Rightarrow 1386=\frac{22}{7}\times R^2$$
    $$\Rightarrow R^2=\frac{1386\times7}{22}$$
    $$\Rightarrow R^2=441$$
    $$\Rightarrow R=21$$
    $$\therefore$$ Radius of bigger circle $$(R)=21\space\mathrm{cm}$$
    Similarly, Area of the smaller circle $$=\pi r^2$$
    $$\Rightarrow 962.5=\frac{22}{7}\times r^2$$
    $$\Rightarrow r^2=\frac{962.5\times7}{22}$$
    $$\Rightarrow r^2=306.25$$
    $$\Rightarrow r=17.5$$
    $$\therefore$$ Radius of smaller circle $$(r)=17.5\space\mathrm{cm}$$
    Hence, Width of Ring $$= R-r=21-17.5=3.5\space\mathrm{cm}$$
    Thus, $$\text{D}$$ is the correct option.

  • Question 10
    1 / -0
    Find the radius of circle if its area is $$125\pi cm^2$$
    Solution
    The area of circle is $$125\pi cm^2$$
    The area of circle of radius  $$ r =\pi r^2$$
    $$\therefore 125\pi cm^2= πr^2 $$
    $$ r^2=125$$
    $$\Rightarrow r=5\sqrt 5cm$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now