Self Studies

Perimeter and Area Test - 9

Result Self Studies

Perimeter and Area Test - 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    One side of a parallelogram is $$8$$ cm. If the corresponding altitude is $$6$$ cm, then its area is given by
    Solution
    Area of parallelogram $$=$$ length $$\times$$ height
    Here altitude is nothing but the height
    $$\therefore $$ Area of parallelogram $$= 8 \times 6$$
    $$= 48\: cm^2$$
  • Question 2
    1 / -0
    Circumference of a circle is .....................
    Solution
    Circumference of a circle whose radius is $$r$$ is given by $$2\pi r.$$
  • Question 3
    1 / -0
    The area of a circle is the measurement of the region enclosed by its
    Solution
    As shown in the above figure, area is the region enclosed inside the boundary/circumference of the circle.

  • Question 4
    1 / -0
    Area of a circle is ...................
    Solution
    Area covered within the boundary of circle = $$\pi \times r^2$$, where $$r$$ is a radius of a circle.
  • Question 5
    1 / -0
    The sides of a triangle are (3p 4) cm, (2p 5) cm and (2p + 5) cm. Which of the following expressions gives its perimeter?
  • Question 6
    1 / -0
    What is the area of the circular ring included between two concentric circles of radius $$14$$ cm and $$10.5$$ cm ? 
    Solution

    Let $$R$$ be the radius of the larger circle
    Hence $$R=14\ cm$$

    Let $$r$$ be the radius of the smaller circle
    Hence $$r=10.5\ cm$$

    Area of the circular ring $$=$$ Area of the larger circle - Area of the smaller circle

                                             $$=\pi R^2 - \pi r^2$$

                                             $$=\dfrac { 22 }{ 7 } \times \left( { R }^{ 2 } - { r }^{ 2 } \right)$$ 

                                             $$= \dfrac { 22 }{ 7 } \times \left( { 14 }^{ 2 } - { 10.5 }^{ 2 } \right)$$

                                             $$=269.5 \ { cm }^{ 2 }$$

                                             $$\approx 269\ { cm }^{ 2 } $$

  • Question 7
    1 / -0
    A path of width 8 m runs around a circular park whose radius is $$38\ m$$. Find the area of the path.

    Solution
    Inner radius (Radius of the park) $$=38\ m$$
    Outer radius (Radius of the park $$+$$ path width of the park) $$=38+8=46\ m$$
    Area of the path $$=\pi(46^2-38^2)$$
                               $$=\cfrac{22}{7}(2116-1444)$$
                               $$=\cfrac{22}{7}(672)$$
                               $$=2112\ m^2$$
  • Question 8
    1 / -0
    In the given figure, the area enclosed between two concentric circles is $$808.5\ cm^2$$. The circumference of the outer circle is $$242\ cm$$. Find the width of the ring.

    Solution
    Let radius of the inner circle be $$r$$ and radius of the outer circle be $$R$$
    Area enclosed between the two concentric circles $$=\pi(R^2-r^2)$$
    Given $$2\pi R=242$$
    $$\Rightarrow R=\cfrac{242 \times 7}{22\times 2}$$
    $$\Rightarrow R=\cfrac{77}{2}$$
    Now, $$\pi(R^2-r^2)=808.5$$
    $$\Rightarrow {\left(\cfrac{77}{2}\right)}^2-r^2=\cfrac{808.5 \times 7}{22}$$
    $$\Rightarrow \cfrac{5929}{4}-r^2=257.25$$
    $$\Rightarrow r^2=1225$$
    $$\Rightarrow r=35$$
     Radius of the inner circle $$=35\ cm$$
    $$\therefore$$ width of the ring $$=(R-r)$$
                                    $$=(38.5-35)\ cm$$
                                    $$=3.5\ cm$$
  • Question 9
    1 / -0
    The radius of a circle is $$5\: m$$. Find the circumference of the circle whose area is $$49$$ times the area of the given circle.
    Solution
    Radius of given circle $$=5\ m$$
    Therefore,
    Area of given circle $$=\pi R^2=\pi (5)^2$$
                                                  $$=25\pi\ m^2$$
    Let radius of required circle $$ =r$$
    Therefore, According to the given condition,
    $$\pi r^2=49\times 25\pi$$
    $$\Rightarrow r^2=(7\times 5)^2$$
    $$\Rightarrow r=35m$$
    Therefore,
    Circumference $$=2\pi r$$
                              $$=2\times \dfrac { 22 }{ 7 }\times35$$
                              $$=220\ m$$
  • Question 10
    1 / -0
    The circumference of a circular field is $$528\ m$$. Then its area  is
    Solution
    $$ Given-\\ the\quad circumference=C\quad of\quad a\quad circular\quad field=528m.\\ To\quad find\quad out-\\ the\quad ar.circle=?\\ Solution-\\ Let\quad the\quad radius\quad of\quad the\quad circle\quad be\quad r.\\ Then\quad r=\cfrac { C }{ 2\pi  } \quad when\quad C=circumference\quad of\quad the\quad circle.\\ \Longrightarrow r=\cfrac { 528 }{ 2\times \cfrac { 22 }{ 7 }  } cm=84m.\\ \therefore \quad ar.circle=\pi { r }^{ 2 }=\cfrac { 22 }{ 7 } \times { 84 }^{ 2 }{ m }^{ 2 }=22176{ m }^{ 2 }.\\ Ans-\quad Option\quad A. $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now