Self Studies

Algebraic Expressions Test - 10

Result Self Studies

Algebraic Expressions Test - 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \left( p+q \right) -\left( p-q \right) $$ is equal to
    Solution
    Given, 
    $$\displaystyle \left( p+q \right) -\left( p-q \right) =p+q-p+q$$
    $$=2q$$
    Hence simplified form of the given expression is $$2q$$
  • Question 2
    1 / -0
    $$\displaystyle { a }^{ 2 }-\left( -{ a }^{ 2 } \right) $$ is equal to
    Solution
    Given, $$\displaystyle { a }^{ 2 }-\left( { -a }^{ 2 } \right) ={ a }^{ 2 }+{ a }^{ 2 }=2a^2$$.
    Hence simplified form of the given expression is $$2a^2$$.
  • Question 3
    1 / -0
    Subtract the sum of $$\displaystyle { 9b }^{ 2 }+{ 3c }^{ 2 }$$ and $$\displaystyle { 2b }^{ 2 }+bc+{ 2c }^{ 2 }$$ from the sum of $$\displaystyle { 2b }^{ 2 }-2bc-{ c }^{ 2 }$$ and $$\displaystyle { c }^{ 2 }+2bc-{ b }^{ 2 }$$.
    Solution
    According to the question,
    $$\displaystyle \left\{ \left( { 2b }^{ 2 }-2bc-{ c }^{ 2 } \right) +\left( { c }^{ 2 }+2bc-{ b }^{ 2 } \right)  \right\} -\left\{ \left( { 9b }^{ 2 }+{ 3c }^{ 2 } \right) +\left( { 2b }^{ 2 }+bc + { 2c }^{ 2 } \right)  \right\} $$
    =$$\displaystyle \left\{ \left( { 2b }^{ 2 }-{ b }^{ 2 } \right) +\left( -2bc+2bc \right) +\left( { c }^{ 2 }-{ c }^{ 2 } \right)  \right\} -\left\{ \left( { 9b }^{ 2 }+{ 2b }^{ 2 } \right) +\left( { 3c }^{ 2 }+{ 2c }^{ 2 } \right) +bc \right\} $$
    $$\displaystyle =\left( { b }^{ 2 } \right) -\left( { 11b }^{ 2 }+{ 5c }^{ 2 }+bc \right) $$

    $$\displaystyle ={ b }^{ 2 }-{ 11b }^{ 2 }-{ 5c }^{ 2 }-bc$$

    $$\displaystyle =-{ 10b }^{ 2 }-bc-{ 5c }^{ 2 }$$.
  • Question 4
    1 / -0
    $$\displaystyle 4x-\left( -2y+5x \right) $$ is equal to
    Solution
    Given, $$\displaystyle 4x-\left( -2y+5x \right) $$
    $$\displaystyle =4x+2y-5x$$
    $$\displaystyle =-x+2y$$
    Hence simplified form is $$-x+2y$$
  • Question 5
    1 / -0
    Simplify: $$\displaystyle \left( { a }^{ 3 }-{ 2a }^{ 2 }+4a-5 \right) -\left( -{ a }^{ 3 }-8a+{ 2a }^{ 2 }+5 \right) $$
    Solution
    Given expression is: $$\displaystyle \left( { a }^{ 3 }-{ 2a }^{ 2 }+4a-5 \right) -\left( -{ a }^{ 3 }-8a+{ 2a }^{ 2 }+5 \right) $$
    $$=\displaystyle { a }^{ 3 }-{ 2a }^{ 2 }+4a-5+{ a }^{ 3 }+8a-{ 2a }^{ 2 }-5$$
    $$\displaystyle ={ 2a }^{ 3 }-{ 4a }^{ 2 }+12a-10$$
    Hence simplified form of the given expression is $$={ 2a }^{ 3 }-{ 4a }^{ 2 }+12a-10$$
  • Question 6
    1 / -0
    If we take away $$\displaystyle -8abc$$ from $$\displaystyle -7abc$$, then the result is equal to
    Solution
    We have to just subtract $$-8abc$$ from $$-7abc$$
    $$=\displaystyle \left( -7abc \right) -\left( -8abc \right) $$
    $$\displaystyle =-7abc+8abc$$
    $$= abc$$
  • Question 7
    1 / -0
    What should be subtracted from $$\displaystyle { x }^{ 2 }-4xy-{ y }^{ 2 }$$ to get $$1$$?
    Solution
    Let the algebraic expression that has to be subtracted be $$a$$. Then,
    $$\displaystyle { x }^{ 2 }-4xy-{ y }^{ 2 }-a=1$$
    $$\displaystyle  a={ x }^{ 2 }-4xy-{ y }^{ 2 }-1$$
    which required algebraic expression.
  • Question 8
    1 / -0
    What is the sum of $$\displaystyle \left( 4a+5b \right) ,\left( -6a+2b \right) ,\left( 7a-6b \right) $$?
    Solution
    We have to find sum of $$(4a+5b), (-6a+2b), (7a-6b)$$
    $$\therefore$$ required sum $$=\displaystyle \left( 4a+5b \right) +\left( -6a+2b \right) +\left( 7a-6b \right) $$
    $$\displaystyle =\left( 4a-6a+7a \right) +\left( 5b+2b-6b \right) $$
    $$=\displaystyle 5a+b$$
  • Question 9
    1 / -0
    Simplify: $$(a^4-3a^2 + 6a - 8) - (a^4 - 10a + 4a^2 + 8)$$
    Solution
    $$(a^4-3a^2+6a-8)-(a^4-10a+4a^2+8)$$

    $$=a^4-3a^2+6a-8-a^4+10a-4a^2-8$$

    $$=a^4-a^4-3a^2-4a^2+6a+10a-8-8$$

    $$=-7a^2+16a-16$$
  • Question 10
    1 / -0
    By how much is $$\displaystyle a^{4}+4a^{2}b^{2}+b^{4}$$ more than $$\displaystyle a^{4}-8a^{2}b^{2}+b^{4}$$ ?
    Solution
    $$\displaystyle a^{4}+4a^{2}b^{2}+b^{4}$$
    $$\displaystyle a^{4}-8a^{2}b^{2}+b^{4}$$
    $$-$$        $$ + $$    $$-$$
    $$\displaystyle \overline{\underline{12a^{2}b^{2}}}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now