Self Studies

Algebraic Expressions Test - 15

Result Self Studies

Algebraic Expressions Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The sum of three algebric expressions is $$\displaystyle x^{2}+y^{2}+z^{2}$$. If two of them are $$\displaystyle 4x^{2}-5y^{2}+3z^{2}$$ and $$\displaystyle -3x^{2}+4y^{2}-2z^{2}$$ then the third expression is
    Solution
    Third exp = $$\displaystyle x^{2}+y^{2}+z^{2}-\left \{ \left ( 4x^{2}-5y^{2}+3z^{2} \right )+\left ( -3x^{2}+4y^{2}-2z^{2} \right ) \right \}$$
    = $$x^2+y^2+z^2 - ( x^2 - y^2 + z^2) $$
    = $$ x^2 + y^2 + z^2 - x^2 + y^2 - z^2$$ 
    = $$2y^2$$
  • Question 2
    1 / -0
    If $$\displaystyle P=3x-4y-8z,\:Q=-10y+7x+11z$$ and $$\displaystyle R=19z-6y+4x$$, then $$P - Q + R$$ is equal to
    Solution
    Given, $$P=3x-4y-8z, Q=-10y+7x+11z, R=19z-6y+4x$$
    We need to find value of $$P - Q + R $$
    $$= (3x - 4y - 8z) - (-10y + 7x + 11z) + (19z - 6y + 4x)$$
    $$ = 3x - 4y - 8z + 10y - 7x - 11z + 19z - 6y + 4x$$
    $$= (3x-7x+4x)+(-4y+10y-6y)+(-8z-11z+19z)$$
    $$=0+0+0=0$$
  • Question 3
    1 / -0
    $$\displaystyle 5a-\left[ 3b-\left\{ a-3\left( 2a-b \right)  \right\}  \right] $$ is equal to
    Solution
    Given, $$\displaystyle 5a-\left[ 3b-\left\{ a-3\left( 2a-b \right)  \right\}  \right] $$
    $$\displaystyle =5a-\left[ 3b-\left\{ a-6a+3b \right\}  \right] $$
    $$\displaystyle =5a-\left[ 3b-\left\{ -5a+3b \right\}  \right] $$
    $$\displaystyle =5a-\left[ 3b+5a-3b \right] $$
    $$\displaystyle =5a-5a=0$$
    Hence given expression vanishes.
  • Question 4
    1 / -0
    Simplify: $$\displaystyle x^{2}y^{3}-1.5x^{2}y^{3}+1.4x^{2}y^{3}$$
    Solution
    $$\displaystyle x^{2}y^{3}-1.5x^{2}y^{3}+1.4x^{2}y^{3}$$
    =$$\displaystyle x^{2}y^{3}(1-1.5+1.4)$$
    $$\displaystyle =0.9x^{2}y^{3}$$
  • Question 5
    1 / -0
    $$(5x^{2} + 6x - 3) + (2x^{2} - 7x - 9)$$
    Solution
        $$5x^{2} + 6x - 3$$
    $$+\underline { 2x^{2} - 7x - 9}$$
       
        $$7x^{2} - x - 12$$
  • Question 6
    1 / -0
    What must be added to $$x^2\,+\, 5x\,-\,6$$ to get $$x^3\, -\,x^2\,+\, 3x\, -\, 2$$?
    Solution
    Let the polynomial to be added be $$p(x)$$
    $$\therefore x^2 + 5x -6 +p(x) = x^3-x^2 +3x-2$$
    $$\therefore p(x) = x^3 -x^2-x^2+3x-5x-2+6$$
    $$\therefore p(x) = x^3 -2x^2-2x+4$$
  • Question 7
    1 / -0
    What is to be added to $$2a^3+4ab^2-5b^3-6a^2b$$ to get $$3a^3-4a^2b+11ab^2+b^3$$?
    Solution
    $$3a^3-4a^2b+11ab^2+b^3$$
    $$\underline {-2a^3+6a^2b-4ab^2+5b^3}$$
    $$a^3+2a^2b+7ab^2+6b^3$$
  • Question 8
    1 / -0
    How many terms are there in the expression $$5x^3+7x^2+8xy$$?
    Solution
    There are $$3$$ terms in the given expression:  $$5x^3, 7x^2, 8xy$$.
  • Question 9
    1 / -0
    What must be subtracted from $$x^4\, +\, 2x^2\,-\,3x\, +\, 7$$ to get $$x^3\,+\, x^2\,+\, x\, -\,1$$?
    Solution
    Let the polynomial to be subtracted be $$p(x)$$

    $$\therefore x^4 +2x^2 - 3x +7 -p(x) = x^3 + x^2 + x -1$$

    $$\therefore x^4-x^3+2x^2-x^2-3x-x+7+1 = p(x)$$

    $$\therefore p(x) = x^4 - x^3 + x^2 - 4x + 8$$
  • Question 10
    1 / -0
    What must be added to the sum of $$\displaystyle 2a^{2}-3a+7,-5a^{2}-2a-11$$ and $$\displaystyle 3a^{2}+5a-8$$ to get $$0$$?
    Solution
    Let '$$x$$' be added to these polynomial to get $$0$$.
    $$\Rightarrow (2a^2-3a+7)+(-5a^2-2a-11)+(3a^2+5a-8)+x=0$$
    $$\Rightarrow (2a^2-5a^2+3a^2)+(-3a-2a+5a)+(7-11-8)+x=0$$
    $$\Rightarrow 0+0+(-12)+x=0$$
    $$\Rightarrow x=12$$
    Option B is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now