Self Studies

Algebraic Expressions Test - 8

Result Self Studies

Algebraic Expressions Test - 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What must be subtracted from $$3x^{2}+4y^{2}-5$$ to get $$2x^{2}-3y^{2}+5$$?
    Solution
    $$(3x^{2}+4y^{2}-5) - a = (2x^{2}-3y^{2}+5)$$
    $$\therefore$$ $$a = 3x^2 + 4 y^2 - 5 - (2x^2 - 3y^2 + 5)$$ 
    $$\therefore$$ $$a = 3x^2 + 4 y^2 - 5 - 2x^2 + 3y^2 - 5$$
    $$\therefore$$ $$a = x^2 + 7y^2 - 10$$
  • Question 2
    1 / -0
    Subtract $$4p^2q -  3pq + 5pq^2 - 8p - 7q - 10$$ from $$18 - 3p +  11q + 5pq - 2pq^2 + 5p^2q$$
    Solution
    Subtract $$4p^2q - 3pq + 5pq^2 - 8p - 7q - 10$$ from $$18-3p+11q+5pq-2pq^{ 2 }+5p^{ 2 }q$$
    $$=18-3p+11q+5pq-2pq^{ 2 }+5p^{ 2 }q-(4p^2q - 3pq + 5pq^2 - 8p - 7q - 10)$$
    $$=18-3p+11q+5pq-2pq^{ 2 }+5p^{ 2 }q-4p^2q + 3pq - 5pq^2 + 8p + 7q + 10$$
    $$=28+5p+18q+8pq-7pq^2+p^2q$$
  • Question 3
    1 / -0
    Simplify: $$-7p-4(-3p + 2 ) $$
    Solution
    Multiplying term by term then adding/subtracting like terms,
    $$-7p-4(-3p+2)$$
    $$=-7p-4(-3p)-4(2)$$
    $$=-7p+12p-8$$
    $$=5p-8$$
  • Question 4
    1 / -0
    Simplify :$$(-8pst + 3prq -14) - (7prq - 20 + 2pst) = $$
    Solution
    $$(-8pst + 3prq -14) - (7prq - 20 + 2pst)$$ $$= (-8pst + 3prq -14 - 7prq + 20 - 2pst)$$
                                                                                 $$= (-8pst - 2pst + 3prq  - 7prq + 20 - 14)$$
                                                                                 $$= (-10pst  - 4prq + 6)$$
  • Question 5
    1 / -0
    Add the following polynomials
    $$ 4 + 2y - 3y^{3}, -8 + 4y +7y^{3} $$ $$ and\  5\ - 6y + 8y^{3} - 6y^{2} $$
    Solution
    Let's add the given polynomials,

    $$\therefore\  4\ + 2y - 3y^{3} -8 + 4y +7y^{3}  + 5\ - 6y + 8y^{3} - 6y^{2}\\$$
    $$=(7+8-3)y^3+(-6)y^2+(2+4-6)y+(4-8+5)\\$$
    $$=12y^{3} - 6y^{2} + 1$$
  • Question 6
    1 / -0
     If $$P = 3x -4y -8z, Q = -10y + 7x + 11z$$ and $$R = 19z - 6y + 4x$$, then $$P-Q + R$$ is equal to
    Solution
    $$P - Q + R$$ $$= 3x - 4y - 8z - (7x - 10y + 11z) + (4x - 6y + 19z)$$
    $$P - Q + R$$ $$= 3x - 4y - 8z - 7x + 10y - 11z + 4x - 6y + 19z \\ = (3 - 7 + 4)x + (-4 + 10 - 6)y + (-8 - 11 + 19)z \\ = 0$$
  • Question 7
    1 / -0
    $$(4px^{2}+5q^{2}y -9rz) - (-3q^{2}y + 7px^{2}-rz) = $$
    Solution
    $$(4px^{2}+5q^{2}y -9rz) - (-3q^{2}y + 7px^{2}-rz)$$$$=(4px^{2}+5q^{2}y -9rz) + 3q^{2}y - 7px^{2} + rz $$
                                                                                  $$=4px^{2} - 7px^{2} + 5q^{2}y + 3q^{2}y - 9rz + rz $$
                                                                                  $$= (-3)px^{2} + 8q^{2}y - 8rz $$
  • Question 8
    1 / -0
    Simplify :$$(-3pq^{2}+ 4pq) - (7pq - 9pq^{2}).$$
    Solution
    $$(-3pq^{2}+ 4pq) - (7pq - 9pq^{2})$$ $$=(-3pq^{2}+ 4pq - 7pq + 9pq^{2})$$
                                                            $$=(6pq^{2} - 3pq)$$
  • Question 9
    1 / -0
    Subtract $$4x+y+2$$ from the sum of  $$3x-2y+7$$ and $$5x-3y-8$$.
    Solution
    Sum of $$3x-2y+7$$ and $$5x-3y-8$$
    $$=3x-2y+7+5x-3y-8$$
    $$=8x-5y-1$$

    Thus, $$8x-5y-1-(4x+y+2)$$
    $$=8x-5y-1-4x-y-2$$
    $$=4x-6y-3$$
  • Question 10
    1 / -0
    Which polynomial should be subtracted from $$y^3+2y^2+5y-1$$ to get $$2y^2+12$$?
    Solution
    The bigger polynomial is $$ y^3+2y^2+5y-1 $$
    Let one polynomial be $$p$$.
    Therefore,
    $$ y^3+2y^2+5y-1 -p=2y^2+12$$
    $$=>y^3+2y^2+5y-1-2y^2-12=p$$
    $$=y^3+5y-13$$
    Therefore,
    The polynomial to be subtracted is $$y^3+5y-13$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now