Self Studies

Exponents and Powers Test - 14

Result Self Studies

Exponents and Powers Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\displaystyle \left (-4  \right ) ^{3}\times \left ( -3 \right )^{3}$$ is _____?
    Solution
    $$\displaystyle \left ( -4 \right )^{3}\times \left ( -3 \right )^{3}=\left ( -4\times -3 \right )^{3}$$

    $$=\displaystyle \left ( -4\times -3 \right )^{3}$$
    $$=\displaystyle 12^3$$
  • Question 2
    1 / -0
    Find the expression which equals $$\displaystyle a^{x}\times b^{x}$$.
    Solution
    $$\displaystyle a^{x}\times b^{x}=\left ( ab \right )^{x}$$
    So, option $$B$$ is correct.
  • Question 3
    1 / -0
    Given that $$2^h\times 2^3 = 2^9$$, find the value of h.
    Solution
    $$2^{h}\times 2^{3}=2^{9}$$ 
    $$\Rightarrow 2^{h+3}=2^{9}$$ 
    $$\Rightarrow h+3=9$$
    $$\Rightarrow \boxed{h=6}$$
  • Question 4
    1 / -0
    Which option has same value as $$10+10^3$$
    Solution
    $$10+{ 10 }^{ 3 }=10+1000=1010=1.01\times { 10 }^{ 3 }$$
    So correct answer will be option D
  • Question 5
    1 / -0
    If $$12^{5} = 3^{t}\times 4^{t}$$, calculate the value of $$t$$.
    Solution
    Given $${ 12 }^{ 5 }={ 3 }^{ t }\times { 4 }^{ t }$$
    If two terms have same power and they are multiplied then the power can be taken as common 
    $$\Rightarrow$$   $${ 12 }^{ 5 }={ (3\times 4) }^{ t }$$
    $$\Rightarrow$$   $${12}^{5} = {12}^{t}$$
    If two terms have same base , then we can equate their powers
    $$\Rightarrow$$    $$t=5$$
  • Question 6
    1 / -0
    If $$5^{n} \div 5^{3} = 5^{7}$$, then find the value of $$n$$.
    Solution
    Given, $${ 5 }^{ n }\div { 5 }^{ 3 }={ 5 }^{ 7 }$$
    $$\Rightarrow { 5 }^{ n-3 }={ 5 }^{ 7 }$$   (In case of division of same base exponents get subtracted)
    $$\Rightarrow n-3=7$$    (When base is same exponents will be equal)
    $$\Rightarrow n=10$$
  • Question 7
    1 / -0
    If $$7^{10}= 7 \times 7^n$$, what is the value of $$n$$?
    Solution
    Given, $${ 7 }^{ 10 }={ 7 }^{ 1 }\times { 7 }^{ n }$$
    $$\Rightarrow 7^{10}={ 7 }^{ 1+n }$$.
    $$\Rightarrow 10 = 1+n$$ (as bases are equal, their powers must be equal)
    $$\Rightarrow n = 9$$
  • Question 8
    1 / -0
    Simplify the following:
    $${ (-2) }^{ 7 }\times { (-2) }^{ 3 }\times { (-2) }^{ 4 }$$
    Solution
    we know,

    $$a^{m}*a^{n}=a^{m+n}$$

    $$\implies$$ $$a^{m}*a^{n}*a^{p}=a^{m+n+p}$$
    so,

    $${ (-2) }^{ 7 }\times { (-2) }^{ 3 }\times { (-2) }^{ 4 }$$

    $$=(-2)^{7+3+4}$$

    $$=(-2)^{14}$$
  • Question 9
    1 / -0
    Simplify the following:
    $${ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 4 }\times { \left( \cfrac { 1 }{ 2 }  \right)  }^{ 5 }\times { \left( \cfrac { 1 }{ 2 }  \right)  }^{ 6 }$$
    Solution
    we know,
    $$a^{m}*a^{n}=(a)^{m+n}$$
    so,
    $${ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 4 }\times { \left( \cfrac { 1 }{ 2 }  \right)  }^{ 5 }$$
    $$=\left(\cfrac12\right)^6$$
    so,

    $${ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 4+5+6 } $$
    $$=\left(\cfrac12\right)^{15}$$
  • Question 10
    1 / -0
    Write $$50000+4000+20+9$$ in standard form.
    Solution
    We need to write it in a standard form:
    $$50000+4000+20+9$$
    $$=54000+20+9$$
    $$=54020+9$$
    $$=54029$$
    Ans-Option $$D$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now