Self Studies

Exponents and Powers Test - 20

Result Self Studies

Exponents and Powers Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the value of $$x$$ in: $$\left (\dfrac {12}{13}\right )^{3x} \div \left (\dfrac {13}{12}\right )^{4} = \left (\dfrac {12}{13}\right )^{10}$$
    Solution
    We can rewrite the given equation as,

    $$\bigg(\dfrac{12}{13}\bigg)^{3x}\times \bigg(\dfrac{12}{13}\bigg)^{4} = \bigg(\dfrac{12}{13}\bigg)^{10}$$

    Now sum of the powers on the right hand side must be equal to the left hand side since the base is same.
    $$3x+4=10$$
    $$3x=6$$
    $$x=2$$
  • Question 2
    1 / -0
    Which of the following expressions is equal to $$x^{mn}$$?
    Solution

  • Question 3
    1 / -0
    Express $$\displaystyle \left ( 125 \right )^{5}$$ as a power with the base $$5$$.
    Solution
    Given, $$\displaystyle \left ( 125 \right )^{5}$$
    $$=\left ( 5^{3} \right )^{5}$$
    $$={5}^{3 \times 5}$$
    $$=5^{15}$$
    Hence, option $$B$$ is correct.
  • Question 4
    1 / -0
    Convert $$62000+39000$$ to scietific form.
    Solution
    On adding, we get
    $$62000+39000=101000$$
    Therefore, $$ 101000=1.01\times 10^5$$
    Hence, option A is correct.
  • Question 5
    1 / -0
    Simplify the following using law of exponents.
    $$9^2 \times 9^{18}\times 9^{10}$$
    Solution
    We know that,

    $$a^{m}\times a^{n}\times a^{p}=a^{m+n+p}$$

    Therefore,

    $$9^{2}\times 9^{18}\times 9^{10}=9^{2+18+10}$$

                              $$=9^{30}$$
  • Question 6
    1 / -0
    Simplify the following using law of exponents.
    $$(-3)^3\times (-3)^{10}\times (-3)^7$$
    Solution
    we know,

    $$a^{m}*a^{n}*a^{p}=a^{m+n+p}$$

    so,

    $$(-3)^{3}*(-3)^{10}*(-3)^{7}=(-3)^{3+10+7}$$

    $$=(-3)^{20}$$

    $$=(3)^{20}$$




  • Question 7
    1 / -0
    Find: $$7^{5} \div 7^{3}=$$
    Solution
    We have the quotient law of exponents,

    $$\dfrac{a^m}{a^n}=a^{m-n}$$

    Applying this,

    $$\dfrac{7^5}{7^3}=7^{5-3}=7^2=49$$
  • Question 8
    1 / -0
    $$(2^{5} \div 2^{2})=?$$
    Solution
    Using law of exponent $$\dfrac {a^m}{a^n}=(a)^{m-n}$$ Where, $$a$$ is non-zero integer
    Therefore, $$\dfrac {(2)^5}{(2)^2}=(2)^{5-2}=(2)^{3}$$







  • Question 9
    1 / -0
    $$a\times a\times b\times b\times b$$ can be written as 
    Solution
    we have, $$a\times a\times b\times b\times b$$
    $$=a^2 \times b^3 =a^2b^3$$

    Hence, $$a\times a\times b\times b\times b$$ can be written as $$a^2b^3$$
  • Question 10
    1 / -0
    The value of $$\left(-\dfrac 23 \right)^4$$ is equal to
    Solution
    Given, $$\left(\dfrac {-2}{3}\right)^4=\left(\dfrac {-2}{3}\right)\times \left(\dfrac {-2}{3}\right)\times \left(\dfrac {-2}{3}\right)\times \left(\dfrac {-2}{3}\right)=\dfrac {16}{81}$$
    [for $$(-a)^m$$, if $$m$$ is even, then $$(-a)^m$$ is positive.]
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now