Self Studies

Exponents and Powers Test - 21

Result Self Studies

Exponents and Powers Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$3^5 \div3^{-6}$$ is
    Solution
    We will use, law of exponent $$a^m \div a^n =a^{m-n}$$
    Therefore , $$3^5+3^{-6}=3^{5-(-6)}=3^{5+6}=3^{11}$$
  • Question 2
    1 / -0
    For a non-zero integer $$x, (x^4)^{-3}$$ is equal 
    Solution
    Using law of exponent $$(x^m)^n =(x)^{m\times n}=(x)^{mn}$$
    $$(x^4)^{-3}=(x)^{4\times-3}=(x)^{-12}$$
  • Question 3
    1 / -0
    If $$x$$ be any integer different from zero and $$m,n$$ be any integers then $$({x^m})^n$$ is equal 
    Solution
    $$(a^m)^n =(a)^{m+n}$$
    [Where,$$a$$ is non-zero integer]
    Similarly, $$(x^m)^n =(x)^{m\times n}=(x)^{mn}$$
  • Question 4
    1 / -0
    For a non-zero integer $$x, x^{12} \div x^{7}$$ is equal to
    Solution
    Using law of exponent  
    $$x^m \div x^n =x^{m-n}$$
    $$\Rightarrow x^{12} \div x^{7} =x^{12-7}=x^{5}$$
  • Question 5
    1 / -0
    $$\left(\dfrac {1}{10}\right)^0$$ is equal to
    Solution
    Using law of exponents, $$a^0=1$$
    where $$a\neq 1$$
    $$\Rightarrow \ \left(\dfrac {1}{10}\right)^0 =1$$
  • Question 6
    1 / -0
    By solving $$(6^0 -7^0) \times (6^0+7^0)$$, we get ________.
    Solution
    $$0$$
    $$(6^0 -7^0) \times (6^0+7^0)$$
    $$=(1-1) \times (1+1)$$
    $$=0\times 2=0$$
  • Question 7
    1 / -0
    For any two non-zero rational numbers $$x$$ and $$y, x^4 \div y^4$$ is equal to
    Solution
    Using law of exponents, 
    $$\dfrac {a^m}{b^m}=\left(\dfrac {a}{b}\right)^m =(a\div b)^m$$
    $$\Rightarrow \ x^4 \div y^4 =\left(\dfrac {x}{y}\right)^4 =(x\div y)^4$$
  • Question 8
    1 / -0
    The usual from for $$2.03\times 10^{-5}$$
    Solution
    Using law of exponents, $$a^{-m}=\dfrac {1}{a^m}$$
    $$\Rightarrow \ 2.03\times 10^{-5}=\dfrac {2.03}{10^5}$$
    $$\Rightarrow \ 2.03\times 10^{-5}=0.0000203$$
  • Question 9
    1 / -0
    $$\left(\dfrac {3}{4}\right)^5 \div \left(\dfrac {5}{3}\right)^5$$ is equal to
    Solution
    Using law of exponents, $$a^m \div b^m =(a\div b)^m$$
    $$\therefore \ \left(\dfrac {3}{4}\right)^5\div \left(\dfrac {5}{3}\right)^5 =\left(\dfrac {3}{4}\div \dfrac 53 \right)^5$$
  • Question 10
    1 / -0
    For any two non-zero rational numbers $$p, p^{13}\div p^8$$ is equal 
    Solution
    Using law of exponents, 
    $$a^m +a^n =(a)^{m-n}$$
    $$ \ p^{13}\div p^8 $$
    $$=(p)^{13-8}$$
    $$=p^5$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now