Self Studies

Exponents and Powers Test - 8

Result Self Studies

Exponents and Powers Test - 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$3^{n} = 27$$, then $$3^{n - 2}$$ $$=$$?
    Solution
    $$3^{n-2}=3^n\times 3^{-2}$$    $$[\because a^{m+n}=a^m\times a^n ]$$
              $$=\cfrac{3^n}{3^2}$$       $$[\because a^{-m}=\dfrac{1}{a^m} ]$$

    $$\implies 3^{n-2}=\cfrac{27}{9}$$

    Thus, $$3^{n-2}=3$$
  • Question 2
    1 / -0
    What is the value of $$2^{0.64}*2^{0.36}$$ ?
    Solution
    $$2^{0.64}*2^{0.36} =2^{0.64+0.36} = 2^{1.00} = 2^1=2\\ (\because a^m*a^n=a^{m+n})$$ 
  • Question 3
    1 / -0
    Standard form of 
    $$900000000000$$ is
    Solution
    Standard form of $$900000000000=9\times 10^{11} $$
  • Question 4
    1 / -0
    $$\sqrt [4]{\sqrt [3]{2^{2}}}$$ equal
    Solution
    $$\Rightarrow$$  $$\sqrt[4]{\sqrt[3]{2^2}}$$

    $$\Rightarrow$$  $$[(2^2)^\tfrac{1}{3}]^{\tfrac{1}{4}}$$

    $$\Rightarrow$$  $$(2)^{2\times \tfrac{1}{3}\times \tfrac{1}{4}}$$

    $$\Rightarrow$$   $$2^{\tfrac{1}{6}}$$

    $$\therefore$$     $$\sqrt[4]{\sqrt[3]{2^2}}=2^{\tfrac{1}{6}}$$
  • Question 5
    1 / -0
    $$(-1)^{11}$$ value is:
    Solution
    The value of $$ {(-1)}^{11} $$ is
    $$={(-1)}^{1+1+1+1+1+1+1+1+1+1+1}$$
    $$={(-1)}^{1}\times{(-1)}^{1}\times{(-1)}^{1}\times{(-1)}^{1}\times{(-1)}^{1}\times{(-1)}^{1}\times{(-1)}^{1}\times{(-1)}^{1}\times{(-1)}^{1}\times{(-1)}^{1}\times{(-1)}^{1}$$
    $$ = -1$$
    As odd power of a negative number results in negative number only.
  • Question 6
    1 / -0
    In $$y^c$$, $$y$$ is called the:
    Solution
    In $$y^c$$, $$y$$ is called $$Base.$$
    $$\Rightarrow$$  $$y^c$$ in this expression $$y$$ is base and $$c$$ is power.
  • Question 7
    1 / -0
    If m is a positive integer which of the following is not equal to $$\displaystyle (2^{4})^{m}$$?
    Solution
    $$\displaystyle \left ( 2^{4} \right )^{m}=2^{4m}$$
    $$\displaystyle 4^{2m}=\left ( 2^{2} \right )^{2m}=2^{4m};$$
    $$\displaystyle 2^{m}\left ( 2^{3m} \right )=2^{m+3m}=2^{4m};$$
    $$\displaystyle 4^{m}\left ( 2^{m} \right )=\left ( 2^{2} \right )^{m}.2^{m}=2^{2m}.2^{m}=2^{3m}\neq 2^{4m}$$
  • Question 8
    1 / -0
    The expanded form of $$a^6$$ is
    Solution
    $$a^6\, =\, a\, \times\, a\, \times\, a\, \times\, a\, \times\, a\, \times\, a$$ 
  • Question 9
    1 / -0
    Value of $$2^4\, \times\, (-3)^2\, \times\, 4^2\, \times\, (-5)^2$$ is
    Solution
    $$2^4\, \times\, (-3)^2\, \times\, 4^2\, \times\, (-5)^2\, =\, 16\, \times\, 9\, \times\, 16\, \times\, 25\, =\, 57600$$
  • Question 10
    1 / -0
    Value of $$(62)^2$$ is
    Solution
    $$62 \times 62 = 3844$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now