Self Studies

Lines and Angles Test - 21

Result Self Studies

Lines and Angles Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the straight lines AB and XY  intersect at the point O and $$\angle AOX=3 \angle XOB$$, then the four angles formed at O are:
    Solution
    As AB is straight line,  let angle AOX = X` then
    So,$$3X+X=180°$$
    $$x=45°$$
    $$3X=135°$$
    Opposite angle will be equal, 
    so, other 2 angles will be 45° and 135°
    Answer (D) 45°,45°,135°,135°

  • Question 2
    1 / -0
    Find the angle which is $$60^o$$ more than its complement.
    Solution
    Let the required angle be $$ x$$.
    Then, its complement $$=(90^o-x)$$.
    Given, the angle is $$60^o$$ more than its complement.
    Then, $$ x=(90^o-x)+60^o$$
    $$\Rightarrow x+x=90^o+60^o$$
    $$ \Rightarrow 2x=150^o\\ \Rightarrow x=\dfrac { 150 }{ 2 } ^o\\ \Rightarrow x={ 75 }^{ o }$$.

    Therefore, option $$B$$ is correct.
  • Question 3
    1 / -0
    In figure, if $$l \parallel m$$, then the value of $$x$$ is:

    Solution
    Since $$l \parallel m$$, then
    $$3y = 2y + 25^0$$    [Alternate $$\angle s$$]
    $$\Rightarrow   3y - 2y = 25^0$$
    $$\Rightarrow                      y = 25^0$$       ......(1) 
    Also $$x + 15^0 = 2y + 25^0$$    [Vertically opposite $$\angle s$$]
    $$\Rightarrow      x + 15^0 = 2\left(25\right) + 25^0$$      [using (1)]
    $$\Rightarrow      x + 15^0 = 50^0 + 25^0$$
    $$\Rightarrow                         x = 75^0 - 15^0$$
    $$\Rightarrow                          x = 60^0$$.(in degrees)
  • Question 4
    1 / -0
    Two supplementary angles differ by $$48^o$$. Then find these angles.
    Solution
    We know that sum of  supplementary angles is $$ 180^o$$.
    Let one angle be $$x$$ and other be $$ 180^o - x$$
    Hence, $$x - (180^o- x) =48^o$$    ....(Given)
    $$ \Rightarrow x- 180^o+ x= 48^o$$
    $$ \Rightarrow 2x= 48^o+ 180^o= 228^o$$
    $$\Rightarrow x= \dfrac { 228^o }{ 2 } = 114^o$$ 
    Hence, other angle $$= 180^o- x= 180^o- 114^o= 66^o$$
    Two angles are $$ 114^o$$ and $$66^o$$.
  • Question 5
    1 / -0
    Angles forming a linear pair can both be acute angles.
    Solution
    Answer is option B (False)
    Both Angles forming linear pair cannot be acute as they add up to form 180 degrees
    .Hence one angle can be acute and other be obtuse or both the angles can be right angles if they form linear pair.
    Hence the above statement is false.
  • Question 6
    1 / -0
    Find the angle which is $$80^o$$ more than its complement.
    Solution
    Let the required angle be $$ x$$.
    Then, its complement $$=(90^o-x)$$.
    Given, the angle is $$80^o$$ more than its complement.
    Then, $$ x=(90^o-x)+80^o$$
    $$\Rightarrow x+x=90^o+80^o$$
    $$ \Rightarrow 2x=170^o\\ \Rightarrow x=\dfrac { 170 }{ 2 } ^o\\ \Rightarrow x={ 85 }^{ o }$$.

    Therefore, option $$B$$ is correct.
  • Question 7
    1 / -0
    How many pairs of adjacent angles, in all, can you name in figure?

    Solution

    The pairs of adjacent angles are:

    1. $$\angle AOB$$ and $$\angle BOC$$

    2. $$\angle AOB$$ and $$\angle BOD$$

    3. $$\angle AOB$$ and $$\angle BOE$$

    4. $$\angle BOC$$ and $$\angle COD$$

    5. $$\angle BOC$$ and $$\angle COE$$

    6. $$\angle COD$$ and $$\angle AOC$$

    7. $$\angle COD$$ and $$\angle DOE$$

    8. $$\angle DOE$$ and $$\angle BOD$$

    9. $$\angle DOE$$ and $$\angle AOD$$

    10. $$\angle COE$$ and $$\angle AOC$$

    Hence there are 10 pairs of adjacent angles.

  • Question 8
    1 / -0
    If two adjacent angles are equal, then each angle measures $$90^o$$.
    Solution
    The answer is $$B$$
    Two adjacent angles measure $$90^o$$, only when the lines are perpendicular to each other.
    hence the above statement is False.
  • Question 9
    1 / -0
    If $$AB\parallel CD$$ and $$BC\parallel DE$$, then the find the value of $$x$$.

    Solution
    Given that,
    $$AB\parallel CD$$ and $$BC\parallel DE.$$
    $$\angle CDE={ 85 }^{ o }.$$

    To find out,
    $$\angle ABC$$

    $$AB\parallel CD$$ and $$BC\parallel DE.$$
    $$\therefore \quad \angle EDC+\angle BCD={ 180 }^{ o }\\ \Longrightarrow \angle BCD={ 180 }^{ o }-\angle EDC$$
     $$\Longrightarrow \angle BCD={ 180 }^{ o }-{ 85 }^{ o }={ 95 }^{ o }$$       (sum of the internal same side angles $$=180^o$$)
     $$\angle ABC=\angle BCD={ 95 }^{ o }$$    (alternate angles)

    Hence, the value of $$x$$ is $$95^o$$.
  • Question 10
    1 / -0
    In the figure measure of two angles are given. If line ED $$\parallel$$ seg AB and  E-C-D then find the values of $$x$$ in degrees.

    Solution
    $$In\quad the\quad above\quad figure\quad ED\parallel AB\\ x=\angle BAC=65(alternate\quad interior\quad angle)\\ x=65^0$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now