Self Studies

Lines and Angles Test - 22

Result Self Studies

Lines and Angles Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In figure, if $$AB\parallel CD$$, then find the value of $$\angle PRG$$

    Solution
    In the figure, $$AB\parallel CD$$ 

    $$ \angle PRB = 2x$$ ....... (Given)

    As lines $$AB$$ and $$PQ$$ intersect at $$R$$ 

    $$ \angle PRB = \angle GRS $$ .......(Vertically opposite angles)

    $$\Rightarrow \angle GRS = 2x$$ 

    Also, $$AB \parallel  CD$$ 

    $$\angle GRS + \angle HSR = 180^o$$ ...... (Sum of Co-interior angle is $$180^o$$)

    $$ \angle HSR = 3x$$ ....... (Given)

    $$ \Rightarrow 2x + 3x =180^o$$ 

    $$ \Rightarrow 5x = \dfrac { 180^o }{ 5 } $$ 

    $$ \Rightarrow x = 36^o$$ 

    $$\angle RSH=3x$$ ....... (Given)

    Also, $$\angle RSH=\angle PRG$$ ........ (Corresponding angles are equal)

    $$\Rightarrow \angle PRG=3x$$

    $$\Rightarrow \angle PRG=3\times 36^o=108^o$$

    Hence, $$\angle PRG=108^o$$
  • Question 2
    1 / -0
    In figure if $$BA\parallel DF, AD\parallel FG, \angle BAC=65^o$$ and $$\angle ACB=55^o$$, then find $$\angle FGH$$.

    Solution
    In $$\triangle ABC$$,
    $$\angle ACB + \angle ACE = 180^{\circ}$$ (Linear pair)
    $$55 + \angle ACE = 180^{\circ}$$
    $$\angle ACE = 125^{\circ}$$
    Now, given, $$AD \parallel FG$$,
    $$\angle ACE = \angle FGH = 125^{\circ}$$ (Corresponding angles of parallel lines)
  • Question 3
    1 / -0
    The measure of an angle is three times the measure of its complement. The angles are:
    Solution
    Let the complement be $$x$$.
    Then the angle $$=3x$$.
    We know, the sum of the complementary angles is $${ 90 }^{ \circ  }$$
    $$\Rightarrow x+3x={ 90 }^{ \circ  }\\ \Rightarrow 4x={ 90 }^{ \circ  }\\ \Rightarrow x=22.5^{ \circ  }$$.
    Hence, the angles are:
    $$x=1\times 22.5^{ \circ  }=22.5^{ \circ  }$$
    and $$3x=3\times 22.5^{ \circ  }={ 67.5 }^{ \circ  }$$.
    Hence, option $$D$$ is correct.
  • Question 4
    1 / -0
    $$AB\, ||\, CD\, ||\, EF$$ and $$GH\, ||\, DI$$. If $$\angle DIH\, =\, 95^{\circ}$$ then the measure of $$\angle GCD$$ is equal to

    Solution
    $$\angle CDI\, =\, 180^{\circ}\, -\, 95^{\circ}\, =\, 85^{\circ}$$ (CD || H1, co-interior angles are supplementary)
    $$\therefore\, \angle GCD\, =\, \angle CDI\, =\, 85^{\circ}$$ (GH || DI, alternate angles)
  • Question 5
    1 / -0
    In figure, if $$AB\parallel CD$$, then find the value of $$\angle CHF$$

    Solution
    $$\quad In\quad figure\quad AB\parallel CD\\ \angle PRB\quad =\quad 2x(Given)\\ As\quad lines\quad AB\quad and\quad PQ\quad intersect\quad at\quad R\\ \angle PRB\quad =\quad \angle GRS\quad \\ \Longrightarrow \angle GRS\quad =\quad 2x\\ Also,AB\quad \parallel \quad CD\\ \quad \angle GRS\quad +\quad \angle HSR\quad =\quad (sum\quad of\quad interior\quad angle\quad is\quad supplementary\\ \angle HSR\quad =\quad 3x\quad (Given)\\ \Longrightarrow 2x\quad +\quad 3x\quad =180\\ \Longrightarrow 5x\quad =\quad \frac { 180 }{ 5 } \\ \Longrightarrow x\quad =\quad 36\\ \angle EGA\quad =\quad 2x\quad (Given)\\ \angle EGA\quad +\quad \angle EGR\quad =\quad 180\\ \Longrightarrow 2x+\quad \angle EGR\quad =180\\ \Longrightarrow \angle EGR\quad =\quad 180\quad -\quad 2x\\ Also\quad \angle GHS\quad =\quad \angle EGR(Corrosponding\quad angles\quad are\quad equal)\\ \Longrightarrow \angle GHS\quad =\quad 180\quad -\quad 2x\\ Putting\quad value\quad of\quad x=36\\ \angle GHS\quad =\quad 180\quad -\quad 2\times 36\quad =180\quad -\quad 72\quad =108\\ \Longrightarrow \angle GHS\quad =\quad 108\\ Now\quad \angle GHS\quad =\quad \angle CHF(Vertically\quad opposite\quad angles)\\ Hence\quad \angle CHF\quad =\quad 108$$
  • Question 6
    1 / -0
    In figure, if $$AB\parallel CD$$, then find the value of $$x$$

    Solution
    Given,  $$ AB\parallel CD $$
    $$ \angle PRG = 3x$$ .......... (Corresponding angles)
    $$ \angle PRG + 2x  = 180^o $$   (Linear pair)
    $$  3x  +  2x  =  180^o  $$
    $$\Rightarrow   x  =   36^o $$
  • Question 7
    1 / -0

    Lines $$m$$ and $$n$$ are cut by a transversal so that $$\angle 1$$ and $$\angle 5$$ are corresponding angles. If $$\angle 1=26x-{7}^{\circ}$$ and $$\angle 5=20x+{17}^{\circ}.$$ What value of $$x$$ makes the lines $$m$$ and $$n$$ parallel?

    Solution
    For the lines $$m$$ and $$n$$ to be parallel, corresponding angles should be equal, i.e, $$\angle 1=\angle 5$$

    $$\Rightarrow$$ $$26x-{7}^{\circ}=20x+{17}^{\circ}$$

    $$\Rightarrow$$ $$6x={24}^{\circ}$$ 

    $$\Rightarrow$$ $$x={4}^{\circ}$$
  • Question 8
    1 / -0
    If ray $$PQ$$ and $$RS$$ are parallel as given in the figure, then fine $$a+b+c$$.

    Solution
    Draw a ray $$TU$$ paralell to $$PQ$$ and $$RS$$. Now,
    $$\angle QPT+\angle PTU={180}^{o}$$   ($$PQ\parallel  TU$$, co-int $$\angle s$$)........(i)
    and $$\angle UTR+\angle TRS={180}^{o}$$  ($$TU\parallel  RS$$, co-int, $$\angle s$$)..........(ii)
    Adding (i) and (ii) we get $$\angle QPT+\angle PTU+\angle UTR+\angle TRS={180}^{o}+{180}^{o}={360}^{o}$$
    $$a+\angle PTR+c={360}^{o}$$ $$\Rightarrow$$ $$a+b+c={360}^{o}$$
  • Question 9
    1 / -0
    In the given figure, $$AB\parallel  CD$$. Find $$x$$.

    Solution
    Through point $$E$$ draw a line $$EF$$ parallel to $$CD$$ and $$AB$$
    Now, $$\angle CEF=4x$$ ($$CD\parallel  EF$$, corr. $$\angle s$$)
    $$\angle AEF=6x$$($$EF\parallel  AB$$, corr. $$\angle s$$)
    Given, $$\angle CEA={130}^{o}$$ $$\Rightarrow$$ $$\angle CEF+\angle AEF={130}^{o}$$
    $$\Rightarrow$$ $$4x+6x={130}^{o}$$ $$\Rightarrow$$ $$10x={130}^{o}$$
    $$\Rightarrow$$ $$x={13}^{o}$$
  • Question 10
    1 / -0
    Three lines intersect at a point generating six angles. If one of these angles is $${90}^{o}$$, then the number of other distinct angles is:
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now