Self Studies

The Triangle and Its Properties Test - 20

Result Self Studies

The Triangle and Its Properties Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Identify the name of the triangle.

    Solution
    We can see that, in the given triangle, the two angles are equal and all angles are less than $$90^{o}$$.

    Hence, the given triangle is an acute isosceles triangle.
  • Question 2
    1 / -0
    Which one of the following is not an acute triangle?
    Solution
    Acute triangle has all angles less than $$90^o$$. 
    So, the second figure is not an acute triangle.

  • Question 3
    1 / -0
    Using the Pythagoras theorem  find the length of the missing side.

    Solution
    $$\displaystyle { AB }^{ 2 }+{ BC }^{ 2 }={ AC }^{ 2 }$$
    $$\displaystyle { 9 }^{ 2 }+{ 12 }^{ 2 }={ AC }^{ 2 }$$
    $$\displaystyle 81+144={ AC }^{ 2 }$$
    $$\displaystyle 225={ AC }^{ 2 }$$
    $$\displaystyle { 15 }^{ 2 }={ AC }^{ 2 }$$
    $$\displaystyle AC=15$$
  • Question 4
    1 / -0
    The angles of a triangle are in the ratio of $$2:3:4.$$ What is the measure of the smallest interior angle of the triangle?
    Solution
    By angle sum property, the sum of angles is $$180^o$$.
    Let $$2x, 3x$$ and $$4x$$ be the three angles.
    $$2x + 3x + 4x = 180^{o}$$
    $$9x = 180^{o}$$
    $$x = 20^{o}$$
    Smallest interior angle $$= 2 \times 20^{o} = 40^{o}.$$
  • Question 5
    1 / -0
    If m$$\angle$$ $$XYZ = 86^o$$ and m$$\angle$$ $$XZY = 23^o$$. What is m$$\angle$$ $$YXZ$$ in the triangle?
    Solution
    By angle sum property, the sum of angles is $$180^o$$.
    $$86^o + 23^o +$$ m$$\angle$$ $$YXZ = 180^o$$
    m$$\angle$$ $$YXZ = 180^o - 109^o$$
    m$$\angle$$ $$YXZ = 71 ^o$$.
  • Question 6
    1 / -0
    What is the value of $$\angle$$ $$XRQ$$?

    Solution
    An exterior angle of a triangle is equal to the sum of the opposite interior angles.
    So by this property:
    $$\angle P+\angle Q = \angle XRQ$$
    $$x - 30 + x - 20 = x + 30$$
    $$2x - 50 = x + 30$$
    $$2x - x = 30 + 50$$
    $$x = 80$$
    Therefore, $$\angle$$ $$XRQ = x + 30\Rightarrow 80 + 30 = 110^o$$
  • Question 7
    1 / -0
    In $$\Delta PQR, \angle Q = 23^{o}$$ and $$\angle R = 20^{o}.$$ What is the measure of $$\angle P?$$
    Solution
    By angle sum property, the sum of angles is $$180^o$$.
    $$\angle P+ \angle Q + \angle R = 180$$
    $$\angle P + 23^{o} + 20^{o} = 180^{o}$$
    $$\angle P = 180^{o} - 43^{o}$$
    $$\angle P = 137^{o}.$$
  • Question 8
    1 / -0
    If m$$\angle$$ $$PRQ = 45^o$$ and m$$\angle$$ $$QPR = 68^o$$. What is m$$\angle$$ $$PQR$$ in the triangle?
    Solution
    by angle sum property, the sum of angles is $$180^o$$.

     $$m\angle PRQ + m\angle QPR + m\angle PQR$$ $$= 180^o$$
    $$45^o + 68^o +$$ m $$\angle$$ $$PQR = 180^o$$
    m$$\angle$$ $$PQR = 180^o - 113^o$$
    m$$\angle$$ $$PQR = 67^o$$ .
  • Question 9
    1 / -0
    In $$\Delta ABC, \angle A = 56^{o}$$ and $$\angle B = 60^{o}.$$ What is the measure of $$\angle C?$$
    Solution
    By angle sum property, the sum of angles is $$180^o$$.
    $$\angle A+ \angle B + \angle C = 180^{o}$$
    $$56^{o} + 60^{o} + \angle C = 180^{o}$$
    $$\angle C = 180^{o} - 116^{o}$$
    $$\angle C = 64^{o}$$
  • Question 10
    1 / -0
    Find $$\angle$$CAD.

    Solution
    An exterior angle of a triangle is equal to the sum of the opposite interior angles.
    So by this property:
     $$71^o$$ and $$51^o$$.
    So, $$\angle$$ $$CAD = 71 + 51$$
    $$\angle$$ $$CAD = 122^o$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now