Self Studies

The Triangle and Its Properties Test - 24

Result Self Studies

The Triangle and Its Properties Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the value of x, y and z in the adjoining figure.

    Solution
    $$In\triangle BCE$$
    $$\implies\quad \angle BEC+\angle BCE+\angle CBE={ 180 }^{ \circ  }$$
    $$\implies\quad { 90 }^{ \circ  }+{ 30 }^{ \circ  }+\angle CBE={ 180 }^{ \circ  }$$
    $$\implies\quad \angle CBE={ 60 }^{ \circ  }$$
    $$ y={ 60 }^{ \circ  }$$
    $$ In\triangle APC:$$
    $$\implies\quad { 50 }^{ \circ  }+{ 30 }^{ \circ  }+\angle APC={ 180 }^{ \circ  }$$
    $$\implies\quad \angle APC={ 100 }^{ \circ  }$$
    $$ \therefore x=180-\angle APC$$
    $$ (\because sum\quad of\quad angles\quad on\quad a\quad straight\quad line={ 180 }^{ \circ  })$$
    $$\implies\quad x={ 180 }^{ \circ  }-{ 100 }^{ \circ  }={ 80 }^{ \circ  }$$
    $$ In\triangle BOP:$$
    $$ z=x+y\quad (exterior\quad angle\quad of\quad a\quad triangle=sum\quad of\quad two\quad opposite\quad interior\quad angles)$$
    $$\implies\quad z=80+60={ 140 }^{ \circ  }$$
    $$ \therefore x={ 80 }^{ \circ  }\quad ,\quad y={ 60 }^{ \circ  }\quad ,z={ 140 }^{ \circ  }$$

  • Question 2
    1 / -0
    In $$\triangle ABC,\angle A={ x }^{ \circ },\angle B={ \left( 2x-15 \right)  }^{ \circ}$$ and $$\angle C ={ \left( 3x+21 \right)  }^{ \circ }$$. Find the value of $$x$$ and the measure of each angle of the triangle.
    Solution
    Given, $$\angle A=x^\circ$$, $$\angle B=(2x-15)^\circ$$ and $$\angle C=(3x+21)^\circ$$.
    We know, by angle sum property, the sum of angles of a triangle is $$180^\circ$$.
    Then, $$\angle A+ \angle B+ \angle C=180^\circ$$
    $$\implies$$ $$x^\circ+(2x-15)^\circ+ (3x+21)^\circ=180^\circ$$
    $$\implies$$ $$6x^\circ+6^\circ=180^\circ$$
    $$\implies$$ $$6x^\circ=180^\circ-6^\circ$$
    $$\implies$$ $$6x^\circ=174^\circ$$
    $$\implies$$ $$x^\circ=29^\circ$$.

    Therefore,
    $$\angle A=x^\circ=29^\circ$$,
    $$\angle B=(2x-15)^\circ=2\times29^\circ-15^o=58^\circ-15^\circ=43^\circ$$
    and $$\angle C=(3x+21)^\circ=3\times29^\circ+21^\circ=87^\circ+21^\circ=108^\circ$$.

    Hence, option $$B$$ is correct.
  • Question 3
    1 / -0
    In $$\triangle XYZ$$  ______________is the base.

    Solution

  • Question 4
    1 / -0
    From the figure, find values of $$x$$ and $$y$$. 

    Solution
    In the given triangle,
    by angle sum property,
    $$40^o+95^o+x^o=180^o.......(i)$$
    and $$x^o+y^o+102^o=180^o.......(ii)$$.

    From $$(i)$$,
    $$40^o+95^o+x^o=180^o$$
    $$\implies$$ $$135^o+x^o=180^o$$
    $$\implies$$ $$x^o=180^o-135^o$$
    $$\implies$$ $$x^o=45^o.......(iii)$$.

    Substitute $$(iii)$$ in $$(ii)$$,
    $$45^o+y^o+102^o=180^o$$
    $$\implies$$ $$y^o+147^o=180^o$$
    $$\implies$$ $$y^o=180^o-147^o$$
    $$\implies$$ $$y^o=33^o$$.

    Therefore, $$x^o=45^o$$ and $$y^o=33^o$$.
    Hence, option $$D$$ is correct.
  • Question 5
    1 / -0
    Find the length of the hypotenuse in a right angled triangle if the sum of the squares of the sides making right angle is 169.
    Solution
    According to the Pythagoras theorem, the sum of the squares of the sides making the right angle is equal to the square of the third side (hypotenuse).

    $$\therefore\ $$ Square of the hypotenuse $$=169$$

    $$\Rightarrow$$ Hypotenuse $$=\sqrt{169}$$

    $$=13\space\mathrm{units}$$

    Hence, option B is correct.
  • Question 6
    1 / -0
    In the fig. then , L (DN) = ?

    Solution

  • Question 7
    1 / -0
    In $$\triangle ABC,\angle B={ 90 }^{ \circ  }$$ find the sides of the triangle if $$AB=(x-3)~cm,BC=(x+4)~cm$$ and $$AC=(x+6)~cm$$. 
    Solution

  • Question 8
    1 / -0
    In triangle, three angles are  $$x , x + 10 ^ { \circ } + x + 20 ^ { \circ }$$  then the biggest is
    Solution

  • Question 9
    1 / -0
    In a right-angled triangle the lengths of base and perpendicular are 6 cm and 8 cm.What is the length of the hypotenuse?
    Solution
    The sides of right angled triangle are $$6,8 cm$$

    The hypotenuse is given as 

    $$a^2+b^2=c^2\\6^2+8^2=c^2\\36+64=c^2\\c^2= 100\\c=\sqrt {100}\\c=10cm$$
  • Question 10
    1 / -0
    If the angles of triangle are in the ratio $$1:4:7$$, then the value of the largest angle is :

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now