Convert the rational numbers into equivalent rational numbers with the same denominator. LCM of $$9$$ and $$5$$ is $$45$$.
$$-\displaystyle\frac{1}{9}=\displaystyle\frac{-1\times5}{9\times5}=\displaystyle\frac{-5}{45}$$ and $$\displaystyle\frac{1}{5}=\displaystyle\frac{1\times9}{5\times9}=\displaystyle\frac{9}{45}$$
The integers between $$-5$$ and $$9$$ are $$-4,\,-3,\,-2,\,-1,\,0,\,1,\,2,\,3,\,4,\,5,\,6,\,7,\,8$$.
The corresponding rational numbers are $$\displaystyle\frac{-4}{45},\,\displaystyle\frac{-3}{45},\,\displaystyle\frac{-2}{45},\,\displaystyle\frac{-1}{45},\,\displaystyle\frac{0}{45},\,\displaystyle\frac{1}{45},\,\displaystyle\frac{2}{45},\,\displaystyle\frac{3}{45},\,\displaystyle\frac{4}{45},\,\displaystyle\frac{5}{45},\,\displaystyle\frac{6}{45},\,\displaystyle\frac{7}{45},\,\displaystyle\frac{8}{45}$$
On selecting any $$9$$ of them, we get $$9$$ rational numbers between $$-\displaystyle\frac{1}{9}$$ and $$\displaystyle\frac{1}{5}$$ as
$$\displaystyle\frac{-4}{45},\,\displaystyle\frac{-3}{45},\,\displaystyle\frac{-2}{45},\,\displaystyle\frac{-1}{45},\,\displaystyle\frac{2}{45},\,\displaystyle\frac{3}{45},\,\displaystyle\frac{4}{45},\,\displaystyle\frac{5}{45},\,\displaystyle\frac{8}{45}$$