Self Studies
Selfstudy
Selfstudy

Rational Numbers Test - 29

Result Self Studies

Rational Numbers Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Four rational number equivalent to $$ \displaystyle \frac{5}{8}   $$ are:
    Solution
     $$ \displaystyle  \frac{5}{8}  $$= $$ \displaystyle  \frac{5\times 2}{8\times 2}  $$= $$ \displaystyle  \frac{5\times 3}{8\times 3}  $$= $$ \displaystyle  \frac{5\times 4}{8\times 4}  $$= $$ \displaystyle  \frac{5\times 5}{8\times 5}  $$
     
    $$ \displaystyle  \therefore \frac{5}{8} $$= $$ \displaystyle \frac{10}{16} $$= $$ \displaystyle   \frac{15}{24} $$= $$ \displaystyle   \frac{20}{32} $$= $$ \displaystyle   \frac{25}{40} $$

    Thus four rational number equivalent to  $$ \displaystyle   \frac{5}{8} $$ are : 
     $$ \displaystyle   \frac{10}{16} $$,  $$ \displaystyle  \frac{15}{24} $$, $$ \displaystyle   \frac{20}{32} $$, $$ \displaystyle   \frac{25}{40} $$
  • Question 2
    1 / -0
    Fill in the blank: $$\left [\dfrac {6}{5}\times \left (\dfrac {-2}{12}\right )\right ] + \left [\dfrac {6}{5} \times \dfrac {4}{12}\right ] = \dfrac {6}{5}\times \left [..... + \dfrac {4}{12}\right ]$$
    Solution
    Distributive property over addition for rational numbers states that
    $$(a\times b) + (a\times c) = a\times (b + c)$$
    $$\therefore \left [\dfrac {6}{5}\times \left (\dfrac {-2}{12}\right )\right ] + \left [\dfrac {6}{5} \times \dfrac {4}{12}\right ]$$
    $$= \dfrac {6}{5}\left [\left (\dfrac {-2}{12}\right ) + \dfrac {4}{12}\right ]$$.
  • Question 3
    1 / -0
    $$ \displaystyle \frac{5}{13}+\_\_=\frac{5}{13} $$
    Solution
    If we add $$0$$ to any number, we get the same number
    $$\therefore \dfrac{5}{13}+0=\dfrac{5}{13}$$
    Hence, the answer is $$0$$.
  • Question 4
    1 / -0
    The value of $$\left [\dfrac {3}{4}\times \dfrac {4}{12}\right ] + \left [\dfrac {3}{4} \times \dfrac {-3}{9}\right ]$$ is
    Solution
    $$\left [\dfrac {3}{4}\times \dfrac {4}{12}\right ] + \left [\dfrac {3}{4} \times \dfrac {-3}{9}\right ]$$
    $$= \dfrac {3}{4}\times \left [\dfrac {4}{12} + \dfrac {-3}{9}\right ]$$ ($$\because$$ distributive property)
    $$= \dfrac {3}{4} \times 0$$
    $$= 0$$.
  • Question 5
    1 / -0
    If $$(81\div 9)\div 3=a$$ and $$81\div(9\div 3)=b$$, then which of the following is correct?
    Solution
    Associative property is not satisfied by division. 
    $$(81\div 9)\div 3=a$$                         $$81\div(9\div3)=b$$
    $$\Rightarrow 9\div 3=3=a$$                        $$81\div3 =27 = b$$

    $$\therefore a\neq b$$  and $$b > a$$

    So, option $$C$$ is correct.
  • Question 6
    1 / -0
    The value of $$\dfrac {1}{2} \times \left (\dfrac {1}{3} + \dfrac {4}{9}\right )$$ is
    Solution
    $$\dfrac {1}{2} \times \left (\dfrac {1}{3} + \dfrac {4}{9}\right ) = \dfrac {1}{2} \times \dfrac {1}{3} + \dfrac {1}{2} \times \dfrac {4}{9}$$ ($$\because$$ distributive property)
    $$= \dfrac {1}{6} + \dfrac {2}{9}$$

    $$= \dfrac {3 + 4}{18}$$

    $$= \dfrac {7}{18}$$.
  • Question 7
    1 / -0
    Find five rational numbers between $$1$$ and $$2.$$
    Solution

    $$\textbf{Step -1: Find required rational numbers.}$$

                     $$\text{We need five rational numbers between }1\text{ and }2.$$

                     $$\text{So, multiply and divide the numbers with a natural number greater or equal to } 5+1=6.$$

                      $$\text{Lets take }7.$$

                      $$1=1\times\dfrac{7}{7}=\dfrac{7}{7}$$

                      $$\text{and }2=2\times\dfrac{7}{7}=\dfrac{14}{7}$$

                      $$\text{Thus, }1\text{ and }2\text{ becomes }\dfrac{7}{7}\text{ and }\dfrac{14}{7}\text{ respectively.}$$

                      $$\text{Since, }7<8<9<10<11<12<13<14$$

                      $$\therefore 1=\dfrac{7}{7}<\dfrac{8}{7}<\dfrac{9}{7}<\dfrac{10}{7}<\dfrac{11}{7}<\dfrac{12}{7}<\dfrac{13}{7}<\dfrac{14}{7}=2$$

                      $$\text{Hence, five rational numbers between }1\text{ and }2\text{ are }\dfrac{8}{7},\dfrac{9}{7},\dfrac{10}{7},\dfrac{11}{7},\text{ and }\dfrac{12}{7}.$$

    $$\textbf{Hence , the correct option is D.}$$

  • Question 8
    1 / -0
    Find the value of $$x$$ in $$\dfrac {4}{3} \times \left [x + \dfrac {1}{13} \right ] = \dfrac {4}{3}\times \dfrac {8}{11} + \dfrac {4}{3}\times \dfrac {1}{13}.$$
    Solution
    $$\dfrac {4}{3} \times \left (x + \dfrac {1}{13} \right ) = \dfrac {4}{3}\times x + \dfrac {4}{3} \times \dfrac {1}{13}$$

    The distributive property over addition for rational numbers states that for any three rational numbers $$a, b$$ and $$c :$$
    $$a (b + c) = (a\times b) + (a\times c)$$

    $$\dfrac {4}{3}\times \dfrac {8}{11} + \dfrac {4}{3} \times \dfrac {1}{13} = \dfrac {4}{3} \times \left (\dfrac {8}{11} \times \dfrac {1}{13}\right )$$
  • Question 9
    1 / -0
    The value of $$\left (\dfrac {5}{9}\times \dfrac {6}{11}\right ) + \left (\dfrac {1}{11}\times \dfrac {3}{9}\right )$$ is
    Solution
    $$\dfrac {5}{9}\times \dfrac {6}{11} + \dfrac {1}{11}\times \dfrac {3}{9}$$

    $$= \dfrac {1}{11}\left [\dfrac {30}{9} + \dfrac {3}{9}\right ]$$ ($$\because$$ distributive property)
    [Also, commutative property was used to get the terms in line]

    $$= \dfrac {1}{11} \left [\dfrac {33}{9}\right ]$$

    $$= \dfrac {1}{3}$$
  • Question 10
    1 / -0
    The value of $$\dfrac {6}{11} \times \left [\left (\dfrac {-7}{6}\right ) - \left (\dfrac {11}{7}\right )\right ]$$ is
    Solution
    $$\dfrac {6}{11} \times \left [\left (\dfrac {-7}{6}\right ) - \left (\dfrac {11}{7}\right )\right ]$$

    $$= \dfrac {6}{11} \times \dfrac {-7}{6} - \dfrac {6}{11}\times \dfrac {11}{7}$$ ($$\because$$ distributive property)

    $$= \dfrac {-7}{11} - \dfrac {6}{7}$$

    $$= \dfrac {-49 - 66}{77}$$

    $$= \dfrac {-115}{77}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now