Self Studies

Mensuration Test - 21

Result Self Studies

Mensuration Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the surface area of the following cubes with length of edge
    $$4\;cm$$
    $$3.2\;cm$$
    Solution
    Total surface area$$=6(4^2)=96 cm^2$$,for edge=4$$ cm^2$$
    Total surface area$$=6(3.2^2)=61.44 cm^2$$, for edge=61.44 $$cm^2$$

  • Question 2
    1 / -0
    The area of a trapezium with height $$14\;cm$$ is $$504\;cm^2$$. If the parallel sides are in the ratio $$4\,\colon\,5$$, find their lengths.
    Solution
    Area of trapezium$$=\dfrac{1}{2}$$(sum of parallel opposite side)(height)
    Let parallel side are $$4x,5x$$
    $$504=\dfrac{1}{2}(4x+5x)(14)$$
    $$\dfrac{(504)(2)}{9(14)}=x$$
    $$x=8$$
    side of one side$$=4(8)=32cm,5(8)=40cm$$

  • Question 3
    1 / -0
    The sum of the radius of the base and the height of a solid cylinder is $$37 m$$. If the total surface area of the cylinder be $$1628 sq. m$$, then its volume is: 
    Solution
    Given, $$r + h = 37 m$$
    Total Surface Area of a Cylinder $$ = 2\pi r(r + h)$$
    Given,
    $$ 2\times \cfrac {7}{22} \times r \times 37 =1628 $$
    $$\Rightarrow r= \cfrac {1628 \times 7}{22 \times 37 \times 2} =7  m $$
    Height (H) $$ = 37 - r = 37 -7 = 30  m $$
    Volume of a Cylinder $$ = \pi { R }^{ 2 }h $$ $$ = \cfrac {22}{7} \times 7 \times 7 \times 30 = 4620  {m}^{3} $$
  • Question 4
    1 / -0
    The cross section of a canal is in the shape of trapezium. The canal is $$15 m$$ wide at the top and $$9 m$$ wide at the bottom. If the area of the cross section is $$720 m^{2}$$, then the depth of the canal is
    Solution

    Given,

    The canal is $$15 m$$ wide at the top and $$9 m$$ wide at the bottom.

     Area of the cross section$$=720 m^{2}$$

    Let the depth of the canal be $$h$$

    Area of a trapezium $$ = \cfrac { 1 }{ 2 } \times$$ Sum of parallel sides $$\times$$ height

    $$\Rightarrow 720= \cfrac { 1 }{ 2 } \times (9 + 15) \times h$$

    $$\Rightarrow 720= \cfrac { 24\times h }{ 2 }$$

    $$\Rightarrow h= \cfrac { 720\times 2 }{ 24 }$$

    $$\Rightarrow h= 60$$

    Hence, depth of the canal is $$ 60\  m $$.

  • Question 5
    1 / -0
    The area of a field is in the shape of a trapezium measures $$1440 m^{2}$$. The perpendicular distance between its parallel sides is $$24 m$$. If the ratio of the parallel sides is $$5 : 3$$. What is the length of the longer parallel side?
    Solution
    Let sides of the field are $$5x$$ and $$3x$$.
    Area of field $$=\cfrac{side_1 +side_2}{2}\times h $$
    Area of field$$=\cfrac { 1 }{ 2 } \times \left( 5x+3x \right) \times 24$$
    $$=96x\ m^2$$
    $$\Rightarrow 96x=1440$$
    $$\Rightarrow x=\cfrac { 1440 }{ 96 } =15m$$
    Therefore, length of longer parallel side$$=15\times 5=75m$$
  • Question 6
    1 / -0
    The shape of the top surface of a table is trapezium. Find its area if its parallel sides are $$1\;m\;and\;1.2\;m$$ and the perpendicular distance between them is $$0.8\;m$$.

  • Question 7
    1 / -0
    The area of a trapezium is $$720\;cm^2$$. The ratio of the parallel sides is $$2\,\colon\,1$$. If the distance between the parallel sides is $$20\;cm$$ then find the length of the parallel sides.
    Solution
    Let length of parallel side$$ = 2x $$ and $$x$$       ($$\because$$ they are in ratio $$2:1$$)
    Area of tapezium $$= \dfrac{1}{2}\times h \left(a+b \right) = 720 cm^2$$          (where $$h = 20 cm $$ given)
    $$ = \dfrac{1}{2} \times 20 \left(2x+x \right) = 720$$
    $$ = 10 \left(2x+x\right) = 720$$
    $$30x = 720$$
    $$ x = 24$$
    Hence the length of the parallel sides $$= 24cm$$  and  $$48cm$$
  • Question 8
    1 / -0
    Find the area covered by a road roller of width $$80\;cm$$ and diameter $$140\;cm$$ in $$40$$ revolutions.
    Solution
    Curved surface area of cylinder$$=2 \pi rh=2 \pi(70)(80)=35200 cm^2=3.52 m^2
    $$
    Area of 40 revolutions$$=3.52 \times 40=140.8 m^2$$
  • Question 9
    1 / -0
    Savitri had to make a model of a cylindrical kaleidoscope for her science project. She wanted to use chart paper to make the curved surface of the kaleidoscope. What would be the area of chart paper required by her, if she wanted to make a kaleidoscope of length $$25\space cm$$ with a $$3.5\space cm$$ radius? You may take $$\left (\pi = \dfrac{22}{7}\right )$$
    Solution
    Kaleidoscope is of cylindrical shape.
    $$\therefore $$ Area of chart paper required $$=$$ CSA of cylinder
                                                         $$=$$ $$2\pi rh$$
                                                        $$ =$$ $$2\times \dfrac { 22 }{ 7 } \times 3.5\times 25$$
                                                        $$ =$$ $$550$$ $${ cm }^{ 2 }$$
  • Question 10
    1 / -0
    From a metal sheet in the shape of trapezium with parallel sides $$64\; \text{cm}\;$$ and $$\;100\; \text{cm}$$ and height $$56\; \text{cm},$$ a circle of radius $$7\; \text{cm}$$ are cut out. Find the area of the metal sheet that it left.
    Solution
    Area of sheet left $$=$$ Area of trapezium - Area of circle
                               $$=$$ $$\dfrac { 1 }{ 2 } \times \text{sum of parallel sides}\times \text{height}-\pi { r }^{ 2 }$$

                              $$ =$$ $$\left(\dfrac { 1 }{ 2 } \times \left( 64+100 \right) \times 56-\dfrac { 22 }{ 7 } \times 7\times 7\right)\ \text{cm}^2$$
                               $$=$$ $$(4592 - 154)\ \text{cm}^2$$
                               $$=$$ $$4438$$ $$\text{ cm }^{ 2 }$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now