Self Studies

Mensuration Test - 22

Result Self Studies

Mensuration Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The diameter of the base of a right circular cylinder is $$28$$ cm and its height is $$21$$ cm Curved surface area of the cylinder is
    Solution
    $$Diameter=28\ cm$$
    $$\Rightarrow r=14\ cm$$
    and $$ h =21 cm$$
    C.S.A of cylinder$$\displaystyle =2\pi rh=2\times \dfrac{22}{7}\times 14\times 21=1848\ cm^{2}$$
  • Question 2
    1 / -0
    The volume of a right circular cylinder is 1100 $$\displaystyle cm^{3} $$ and the radius of its base is 5 cm. The area of its curved surface is
    Solution
    Volume of a cylinder$$=2\times\pi \times r\times h$$
    $$\Rightarrow 1100=\displaystyle \dfrac{22}{7}\times 5^{2}\times h$$       {$$\because volume = 1100 \,cm^3\, is\, given$$}

          $$\Rightarrow h =14cm$$

    $$\therefore \displaystyle C.S.A =2\times \dfrac{22}{7}\times 5\times 14$$
    $$\therefore C.S.A=440cm^{2}$$
  • Question 3
    1 / -0
    The diameter of a garden roller is $$1.4$$ m and it its $$2$$ m long. How much area will it cover in one revolution?
    Solution
    $$\Rightarrow$$  Diameter of the roller $$(d)=1.4\,m$$.

    $$\Rightarrow$$  Radius of the roller $$(r)=\dfrac{1.4}{2}=0.7\,m.$$

    $$\Rightarrow$$  Length of the roller $$(h)=2\,m.$$

    If the roller complete one revolution

    Then the area covered $$=$$ Curved surface area of the roller $$=2\pi r h$$

    $$\Rightarrow$$  Area covered in $$1$$ revolution $$=2\pi r h$$

                                                           $$=2\times \dfrac{22}{7}\times 0.7\times 2\\$$
                                                           $$=88\times 0.1\\$$
                                                           $$=8.8\,m^2$$
  • Question 4
    1 / -0
    If the radius of the base of a cylinder is $$2$$ cm and its height $$7$$ cm, then what is its curved surface area?
    Solution
    Given, $$r=2$$ cm, $$h=7$$ cm

    Then curved surface area $$=2 \pi r h$$

    $$=2\times \dfrac{22}{7}\times 2\times 7$$

    $$=88 cm^{2}$$
  • Question 5
    1 / -0
    The diameter of a garden roller is $$1.4\space m$$ and it is $$2\space m$$ long. How much area will it cover in $$5$$ revolutions? (Use $$\pi = \dfrac{22}{7}$$)
    Solution

    Since the diameter of the roller is
    $$ 0.7  m $$, its radius is $$ 0.35  m $$. 

    The roller is in the shape of a cylinder. 

    In one revolution, the roller covers the distance of one curved surface area.

    Curved Surface Area of a Cylinder of Radius "$$R$$" and height "$$h$$" $$= 2\pi Rh$$

    Radius of the roller $$ = 0.7  m $$

    Curved Surface Area of the roller of radius $$ 0.35  m = 2 \times \dfrac {22}{7}\times 0.7 \times 2 = 8.8  m^2 $$ 

    Area covered in $$5$$ revolutions $$ = 5 \times 8.8  m^2 = 44  m^2 $$

  • Question 6
    1 / -0
    A metal pipe is $$77$$ cm long The inner diameter of a cross section is $$4$$ cm then inner curved surface area is
    Solution
    $$\Rightarrow$$  Diameter of inner section of pipe $$(d)=4\,cm$$

    $$\Rightarrow$$  Radius of inner section of pipe $$(r)=\dfrac{4}{2}=2\,cm$$

    $$\Rightarrow$$  Height of a pipe $$(h)=77\,cm$$

    $$\Rightarrow$$  Inner surface area of a pipe $$=2\pi rh$$

                                                          $$=2\times \dfrac{22}{7}\times 2\times 77$$

                                                          $$=968\,cm^2$$

  • Question 7
    1 / -0
    Curved surface area of a right circular cylinder is $$4.4$$ $$\displaystyle m^{2}$$ If the radius of the base of the cylinder is $$0.7$$ m then its height is
    Solution
    Curved surface area $$=\displaystyle 2\pi rh=4.4$$

    $$\Rightarrow 2\times \dfrac{22}{7}\times 0.7\times h=4.4\Rightarrow h=1m.$$
  • Question 8
    1 / -0
    Two tables with top faces as two congruent trapeziums are joined as shown. The lengths of the parallel sides are $$100\;cm\;and\;80\;cm$$ and the height is $$45\;cm$$. Find the combined table top area and the cost of polishing it at the rate of $$Rs.\;350$$ per $$m^2$$.

    Solution
    Combined area $$= 2$$ $$\times $$ area of $$1$$ table top
                              $$ =$$ $$2\times \dfrac { 1 }{ 2 } \times (\text{sum of parallel sides})\times h$$

                               $$=$$ $$\left( 100+80 \right) \times 45=8100{ cm }^{ 3 }=0.81{ m }^{ 2 }$$

    Cost of polishing $$=$$ $$Rs.\left( 0.81\times 350 \right) =Rs.283.50$$
  • Question 9
    1 / -0
    Volume of the box of outer dimensions 22 cm X 12 cm X  9 cm
    Solution
    The dimensions of box are 24 cm ,22 cm and 17 cm 
    volume = $$l\times b\times h$$
    volume =24 x 22 x 17 = 2376 cubic cm
  • Question 10
    1 / -0
    Total surface area of a cube of 2 centimetre side is 
    Solution
    Total surface area of the cube=$$6a^2$$
    Here a=2 cm
    $$\Rightarrow 6\times (2^2)=24 cm^2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now