Self Studies

Exponents and Powers Test - 17

Result Self Studies

Exponents and Powers Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Compare the folllowing:
    $$0.000000038$$ _______ $$\displaystyle 3\cdot 8\times 10^{-8}$$
    Solution
    $$\displaystyle 0\cdot 000000038= 3\cdot 8\times 10^{-8}$$
  • Question 2
    1 / -0
    The value of $${ \left[ { \left( { 3 }^{ 2 } \right)  }^{ 2 } \right]  }^{ -1 }$$ is-
    Solution
    $$\cfrac { 1 }{ { \left( { 3 }^{ 2 } \right)  }^{ 2 } } $$        $$\because (a^m)^n=a^{mn}$$
    $$=\cfrac { 1 }{ { 3 }^{ 4 } }$$
    $$ =\cfrac { 1 }{ 81 }$$
    $$ =0.0123$$
  • Question 3
    1 / -0
    The thickness of paper is $$0.004\ m$$  and that of another paper is $$0.008\ m$$. Compare their sizes.
  • Question 4
    1 / -0
    $$For \ a \  natural \  number \  n , \  2n(n-1)!\leqslant  n^n, if$$:
    Solution

  • Question 5
    1 / -0
    The value of $$(-2)^{-5}$$
    Solution

    $${\textbf{Step - 1: Use negative exponent rule}}$$

                       $${\text{If the number written in the power of a number is negative like }}{{\text{x}}^{ - n}}$$$${\text{ then we write it as }}\dfrac{1}{{{x^n}}}.$$

                      $$\therefore{( - 2)^{ - 5}} = \dfrac{1}{{{{( - 2)}^{^5}}}} $$

    $${\textbf{Step - 2: Find the value}}$$

                      $$\dfrac{1}{{{{( - 2)}^{^5}}}} =\dfrac{1}{{{{- 2}^{^5}}}}=  - \dfrac{1}{{32}}$$

    $${\textbf{Hence, the correct option is B.}}$$

  • Question 6
    1 / -0
    The value of $$(-3)^{-4}$$ is 
    Solution
    Given $$(-3)^{-4}$$
    We know according to the law of exponents $$a^{-m}={ \left( \dfrac { 1 }{ { a }^{ m } }  \right)  }$$
    We can write given equation as $$(-3)^{-4} ={ \left( \dfrac { 1 }{ { -3 }^{ 4 } }  \right)  }$$
    But we also know that $$3^4=81$$
    substituting in above we get $$(-3)^{-4}=\dfrac{1}{81}$$
    [$$\therefore $$ Since the multiplication of negative sign is even so it becomes positive]
  • Question 7
    1 / -0
    The value of $$\left(\dfrac{2}{5}\right)^{-3}$$ is 
    Solution
    Given $$\left(\dfrac{2}{5}\right)^{-3}$$

    We know according to the law of exponents $${ \left( \dfrac { a }{ b }  \right)  }^{ -m } = { \left( \dfrac { b }{ a }  \right)  }^{ m }$$

    We can write given equation as $$\left(\dfrac{2}{5}\right)^{-3} = \left(\dfrac{5}{2}\right)^{3}$$

    And also we know that $$2^3$$ is $$8$$ and $$5^3$$ is $$125$$

    By substituting in above we get $$\left(\dfrac{2}{5}\right)^{-3} = \left(\dfrac{5}{2}\right)^{3} = \dfrac{125}{8}$$ 
  • Question 8
    1 / -0
    Mark tick against the correct answer in each of the following:
    $$(1/2)^{-2} +(1/3)^{-2} + (1/4)^{-2}=$$?
    Solution
    We know that,
    $$\Rightarrow (1/2)^{-2}=(2/1)^{2}\quad [\because (a/b)^{-n}=(b/a)^n]$$
    also, $$\Rightarrow (1/3)^{-2}=(3/1)^{2}\quad [\because (a/b)^{-n}=(b/a)^n]$$
    and $$\Rightarrow (1/4)^{-2}=(4/1)^{2}\quad [\because (a/b)^{-n}=(b/a)^n]$$
    Now add,
    $$=(2)^2 +(3)^2+(4)^2$$
    $$=4+9+16$$
    $$=29$$
  • Question 9
    1 / -0
    $$\left( \dfrac { 1 }{ 2 }  \right) ^{ -2 }+\quad \left( \dfrac { 1 }{ 3 }  \right) ^{ -2 }+\left( \dfrac { 1 }{ 4 }  \right) ^{ -2 }$$
    Solution
    Given $$\left( \dfrac { 1 }{ 2 }  \right) ^{ -2 }+\quad \left( \dfrac { 1 }{ 3 }  \right) ^{ -2 }+\left( \dfrac { 1 }{ 4 }  \right) ^{ -2 }$$

    We know according to the law of exponents $$a^{-m}={ \left( \dfrac { 1 }{ a^m }  \right)  }$$

    $$\left( \dfrac { 1 }{ 2 }  \right) ^{ -2 }+\quad \left( \dfrac { 1 }{ 3 }  \right) ^{ -2 }+\left( \dfrac { 1 }{ 4 }  \right) ^{ -2 }=\left( \dfrac { 2 }{ 1 }  \right) ^{ 2 }+\quad \left( \dfrac { 3 }{ 1 }  \right) ^{ 2 }+\left( \dfrac { 4 }{ 1 }  \right) ^{ -2 } =2^2+3^2+4^2=4+9+16=29$$
  • Question 10
    1 / -0
    Mark tick against the correct answer in each of the following:
    $$\left\{6^{-1} +(3/2)^{-1}\right\}^{-1}$$
    Solution
    We know that,
    $$=(6)^{-1}=(1/6)\quad [\because (a/b)^{-n}=(b/a)^n]$$
    $$=(3/2)^{-1}=(2/3)\quad [\because (a/b)^{-n}=(b/a)^n]$$
    Now add,
    $$=\left\{(1/6)+(2/3)\right\}^{-1}$$
    $$=\left\{(1+4)/6\right\}^{-1}$$
    $$=\left\{5/6\right\}^{-1}$$
    $$=\left\{6/5\right\}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now