Self Studies

Exponents and Powers Test - 18

Result Self Studies

Exponents and Powers Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $${ \left( \dfrac { -1 }{ 2 }  \right)  }^{ -3 }=?$$
    Solution
    Given $${ \left( \dfrac { -1 }{ 2 }  \right)  }^{ -3 }$$
    We know according to the law of exponents $$a^{-m}={ \left( \dfrac { 1 }{ a^m }  \right)  }$$

    By applying the above law we get $${ \left( \dfrac { -1 }{ 2 }  \right)  }^{ -3 }=\dfrac{-2}{1}^3$$

    But we know that $$(-2)^3=-8$$
    By substituting this we get $${ \left( \dfrac { -1 }{ 2 }  \right)  }^{ -3 }=-\dfrac{1}{8}$$
  • Question 2
    1 / -0
    $${ \left( \dfrac { -5 }{ 3 }  \right)  }^{ -1 }=?$$
    Solution
    Given $${ \left( \dfrac { -5 }{ 3 }  \right)  }^{ -1 }$$
    We know according to the law of exponents $$a^{-m}={ \left( \dfrac { 1 }{ a^m }  \right)  }$$
    By applying the above law we get $${ \left( \dfrac { -5 }{ 3 }  \right)  }^{ -1 }=\dfrac{1}{{ \dfrac { -5 }{ 3 }    }^{ -1 }}$$
    On rearranging the above we get $${ \left( \dfrac { -5 }{ 3 }  \right)  }^{ -1 }=\dfrac{-3}{5}$$
  • Question 3
    1 / -0
    $$(-3/7)^{-1} = ?$$
    Solution
    $$(-3/7)^{-1}$$
    We know, $$x^{-1}=\dfrac{1}{x}$$

    $$\Rightarrow$$  $$(-3/7)^{-1}$$ $$=\dfrac{1}{\dfrac{-3}{7}}$$

                            $$=1\times\dfrac{7}{-3}$$

                            $$=\dfrac{-7}{3}$$

    $$\therefore$$  $$(-3/7)^{-1}$$ $$=\dfrac{-7}{3}$$
  • Question 4
    1 / -0
    $$\left\{ \left( \dfrac { 1 }{ 3 }  \right) ^{ -3 }-\quad \left( \dfrac { 1 }{ 2 }  \right) ^{ -3 } \right\} \div \quad \left( \dfrac { 1 }{ 4 }  \right) ^{ -3 }=?$$
    Solution
    Given $$\left\{ \left( \dfrac { 1 }{ 3 } \right) ^{ -3 }-\quad \left( \dfrac { 1 }{ 2 } \right) ^{ -3 } \right\} \div \quad \left( \dfrac { 1 }{ 4 } \right) ^{ -3 }$$
    We know according to the law of exponents $$a^{-m}={ \left( \dfrac { 1 }{ a^m } \right) }$$
    $$\left\{ \left( \dfrac { 1 }{ 3 } \right) ^{ -3 }-\quad \left( \dfrac { 1 }{ 2 } \right) ^{ -3 } \right\} \div \quad \left( \dfrac { 1 }{ 4 } \right) ^{ -3 }=\left\{ \left( \dfrac { 3 }{ 1 } \right) ^{ 3 }-\quad \left( \dfrac { 2 }{ 1 } \right) ^{ 3 } \right\} \div \quad \left( \dfrac { 4 }{ 1 } \right) ^{ 3 }=(3^3-2^3) \div 4^3$$
    But we know that $$3^3$$ is $$27,2^3$$ is $$8$$ and $$4^3$$ is $$64$$, on substituting
    $$\Rightarrow (3^3-2^3) \div 4^3=(27-8) \div \ 64$$
    $$\Rightarrow 19\ \div 64=\dfrac{19}{64}$$
  • Question 5
    1 / -0
    Mark tick against the correct answer in each of the following:
    $$(6^{-1}-8^{-1})^{-1}=$$?
    Solution
    We know that,
    $$=(6)^{-1}=\left(\dfrac{1}{6}\right)^{1}\quad [\because \left(\dfrac{a}{b}\right)^{-n}=\left(\dfrac{b}{a}\right)^n]$$
    $$=(8)^{-1}=\left(\dfrac{1}{8}\right)^{1}\quad $$
    Now $$(6^{-1}-8^{-1})^{-1}=\left(\dfrac{1}{6}-\dfrac{1}{8}\right)^{-1}$$
    $$=\left(\dfrac{4-3}{24}\right)^{-1}$$
    $$=\left(\dfrac{1}{24}\right)^{-1}$$
    $$=24$$
  • Question 6
    1 / -0
    Mark tick against the correct answer in each of the following:
    $$(-1/2)^{-6}=$$?
    Solution
    We know that,
    $$=(-1/2)^{-6}=(-2/1)^6\quad [\because (a/b)^{-n}=(b/a)^n]$$
    $$=(-2)^6$$
    $$=64$$
  • Question 7
    1 / -0
    Mark tick against the correct answer in each of the following:
    $$\left\{(3/4)^{-1}+(1/4)^{-1}\right\}^{-1}=$$?
    Solution
    We know that,
    $$=(3/4)^{-1}=(4/3)^1\quad [\because (a/b)^{-n}=(b/a)^n]$$
    $$=(1/4)^{-1}=(4/1)^1 \quad [\because (a/b)^{-n}=(b/a)^n]$$
    Now subtract,
    $$=\left\{(4/3)+(4/1)\right\}^{-1}$$
    $$=\left\{(4+12)/3\right\}^{-1}$$
    $$=\left\{16/3\right\}^{-1}$$
    $$=\left\{3/16\right\}$$
  • Question 8
    1 / -0
    The value of $$\dfrac {1}{4^{-2}}$$ is
    Solution
    We will use, law of exponent $$a^{-m}=\dfrac {1}{a^m}$$, 
    Therefore, $$\dfrac {1}{4^{-2}}=\dfrac {\dfrac {1}{1}}{4^{2}}=\dfrac {\dfrac {1}{1}}{16} =1\times 16=16$$
  • Question 9
    1 / -0
    For a fixed base(10) if the exponent decreases by $$1$$, the number becomes
    Solution
    If the exponent is decreased by $$1$$, then for the fixed base, the number becomes one-tenth of the previous number.
    For $$10^5$$, exponent decreases by $$1$$
    $$\Rightarrow \ 10^{5-1}=10^4$$
    $$\Rightarrow \ \dfrac {10^4}{10^5}=\dfrac {1}{10}$$
  • Question 10
    1 / -0
    Mark tick against the correct answer of the following:
    $$\left(\dfrac23\right)^{-5}=$$?
    Solution
    We know that,
     $$ \left(\dfrac ab\right)^{-n}=\left(\dfrac ba\right)^{n}$$

    $$\therefore\left(\dfrac23\right)^{-5}\\=\left(\dfrac32\right)^5$$
    $$=\dfrac{3^5 }{2^5}$$          $$\left[\because \left(\dfrac ab\right)^{n}=\left(\dfrac{a^n}{b^n}\right)\right]$$
    $$=\dfrac{243}{32}$$

    Hence the correct answer is $$Opt:[B]$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now