Self Studies

Exponents and Powers Test - 19

Result Self Studies

Exponents and Powers Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$3^{-2}$$ can be written as
    Solution
    We will use, law of exponent $$a^{-m}=\dfrac {1}{a^m}$$, where $$a=$$ non zero integer
    Therefore, $$3^{-2}=\dfrac {1}{3^2}$$
  • Question 2
    1 / -0
    The value of $$\left(\dfrac 25 \right)^{-2}$$ is
    Solution
    We will use, law of exponent $$a^{-m}=\dfrac {1}{a^m}$$ where $$a=$$ non-zero integer

    $$\left(\dfrac {2}{5}\right)^{-2}=\dfrac {1}{\left(\dfrac {2}{5}\right)^2} \\=\dfrac {1}{\dfrac {4}{25}}\\=\dfrac {25}{4}$$
  • Question 3
    1 / -0
    Mark tick against the correct answer in each of the following:
    $$[\left\{(-1/2) ^{2}\right\}^{-2}]^{-1}=$$?
    Solution
    $$[\left\{(-1/2) ^{2}\right\}^{-2}]^{-1}=[\left\{(-1^2/2) ^{2}\right\}^{-2}]^{-1}=$$
    $$=[\left\{1/4\right\}^{-2}]^{-1}$$
    $$=[\left\{4\right\}^{2}]^{-1}$$
    $$=[16^{-1}$$
    $$=[1/16]$$
  • Question 4
    1 / -0
    The value of $$\left(\dfrac 25 \right)^{-1}$$ is
    Solution
    We will use, law of exponent $$a^{-m}=\dfrac {1}{a^m}$$ where $$a=$$ non-zero integer
    $$\left(\dfrac {2}{5}\right)^{-1}=\dfrac {1}{\left(\dfrac {2}{5}\right)^1} =\dfrac {5}{2}$$
  • Question 5
    1 / -0
    If $$x$$ be any integer different from zero and $$m$$ be any integers then $$x^{-m}$$ is equal to
    Solution
    Using law of exponents,
    $$a^{-m} =\dfrac {1}{a^m}$$
    [Where,$$a$$ is non-zero integer]
    Similarly, $$x^{-m}=\dfrac {1}{x^m}$$
  • Question 6
    1 / -0
    The value of $$(-2)^{2\times 3-1}$$ is
    Solution
    To find the value of $$(-2)^{2\times 3-1}$$

    $$(-2)^{2\times 3-1}$$
    $$=(-2)^{6-1}$$
    $$=(-2)^5$$
    $$=(-2)\times (-2)\times (-2)\times (-2)\times (-2)$$
    $$=(4)\times (4)\times (-2)$$
    $$=(16)\times (-2)$$
    $$=-32$$

    Hence, the result $$=-32$$
  • Question 7
    1 / -0
    On multiplying ________  by $$2^{-5}$$ we get $$2^5$$
    Solution
    $$2^{-5} \times 2^{5}= \dfrac{1}{2^5} \times 2^{5} = 1$$
  • Question 8
    1 / -0
    The value of $$(7^{-1}-8^{-1})^{-1} -(3^{-1}-4^{-1})$$ is
    Solution
    Using law of exponents, $$a^{-m}=\dfrac {1}{a^m}$$

    $$\Rightarrow \ (7^{-1}-8^{-1})^{-1}-(3^{-1} -4^{-1})^{-1}=\left(\dfrac {1}{7}-\dfrac {1}{8}\right)^{-1}-\left(\dfrac {1}{3}-\dfrac {1}{4}\right)^{-1}$$

    $$\Rightarrow \ \left(\dfrac {1\times 8-1\times 7}{56}\right)^{-1}- \left(\dfrac {1\times 4-1\times 3}{12}\right)^{-1}$$


    $$=\left(\dfrac {8-7}{56}\right)^{-1} -\left(\dfrac {4-3}{12}\right)^{-1}$$


    $$=\left(\dfrac {1}{56}\right)^{-1} -\left(\dfrac {1}{12}\right)^{-1}$$


    Again we will use $$a^{-m} =\dfrac {1}{a^m}$$


    $$\Rightarrow (7^{-1} -8^{-1})^{-1} -(3^{-1} -4^{-1})^{-1}=\left(\dfrac {1}{56}\right)^{-1}-\left(\dfrac {1}{12}\right)^{-1}$$


    $$=56-12=44$$.
  • Question 9
    1 / -0
    $$\left(-\dfrac 57 \right)^{-5}$$ is equal to
    Solution
    Using law of exponent $$a^{-m}=\dfrac {1}{a^m}$$
    [Where, $$a$$ is non-zero integer]
    $$\left(\dfrac {-5}{7}\right)^{-5}=\dfrac {1}{\left(\dfrac {-5}{7}\right)^{5}}=\left(-\dfrac {7}{5}\right)^{5}$$
  • Question 10
    1 / -0
    $$\left(\dfrac {-7}{5} \right)^{-1}$$ is equal 
    Solution
    Using law of exponent $$a^{-m}=\dfrac {1}{a^m}$$
    [Where, $$a$$ is non-zero integer]
    $$\left(\dfrac {-7}{5}\right)^{-1}=\dfrac {1}{\left(\dfrac {-7}{5}\right)}=\left(-\dfrac {5}{7}\right)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now