Self Studies

Factorisation Test - 16

Result Self Studies

Factorisation Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Factorize : $$4ax + 4ay$$
    Solution
    The common factor between $$4ax$$ and $$4ay$$ is $$4a$$ that is the HCF of $$4ax$$ and $$4ay$$ is $$4a$$. 
    Therefore, we take $$4a$$ as a common factor in the expression $$4ax+4ay$$ as shown below:
    $$4ax+4ay=4a(x+y)$$
    Hence, the factorization of $$4ax+4ay$$ is $$4a(x+y)$$.
  • Question 2
    1 / -0
    Factorize the below equation:
    $$b(a+d) -c(a+d)$$
    Solution
    The common factor between $$b(a+d)$$ and $$c(a+d)$$ is $$(a+d)$$ that is the HCF of $$b(a+d)$$ and $$c(a+d)$$ is $$(a+d)$$
    Therefore, we take $$(a+d)$$ as a common factor in the expression $$b(a+d)-c(a+d)$$ as shown below:
    $$b(a+d)-c(a+d)=(a+d)(b-c)$$
    Hence, the factorization of $$b(a+d)-c(a+d)$$ is $$(b-c)(a+d)$$.
  • Question 3
    1 / -0
    $$\displaystyle \left( { 3x }^{ 2 }-x \right) \div \left( -x \right) $$ is equal to
    Solution
    $$\displaystyle \left( { 3x }^{ 2 }-x \right) \div \left( -x \right)$$
    By separating denominators, we get
    $$  =\dfrac { 3{ x }^{ 2 } }{ -x } +\dfrac { \left( -x \right)  }{ \left( -x \right)  } =-3x+1$$
    Hence, final result after given operation is $$-3x+1$$.
  • Question 4
    1 / -0
    One of the factor of $$(25x^2-1)+(1+5x^2)$$ is
    Solution
    Given, $$(25x^2-1)+(1+5x^2)=30x^2=(3x)(10x)$$
    Clearly, $$10x$$ is factor of $$(25x^2-1)+(1+5x^2)$$
    Option D is correct.
  • Question 5
    1 / -0
    Factorise $$ax^2y + bxy^2 + cxyz$$
    Solution
    We have, $$ax^2y =a \times x \times x \times y$$
    $$ bxy^2 = b \times x \times y \times y$$
    and, $$cxyz= c \times x \times y \times z$$
    The three terms have x and y as common factors
    $$\therefore ax^2y + bxy^2 + cxyz = (a \times x \times x \times y) + (b \times x \times y \times  y) +(c \times x \times y \times  z)  $$
    $$= x \times  y \times (a \times x +b \times  y + c \times z) $$
    $$=xy(ax+by+ cz)$$
  • Question 6
    1 / -0
    Which of the following is factorization of $$(-56mnp^2 + 7mnp).$$
    Solution
    $$-56mnp^2+7mnp$$
    $$=-7\times 8mnp^2+7mnp$$
    $$=7mnp(-8p+1)$$
  • Question 7
    1 / -0
    Factorise :
    $$\displaystyle 121ac-16a^{2}b^{2}$$
    Solution
    $$121ac-16a^2b^2$$
    $$=121\times a\times c-16\times a\times a\times b\times b$$
    $$=a(121c-16ab^2)$$
  • Question 8
    1 / -0
    Which of the following is an example of factorisation?
    Solution
    The common factor between $$x^2$$ and $$2x$$ is $$x$$ that is the HCF of $$x^2$$ and $$2x$$ is $$x$$

    Therefore, we take $$x$$ as a common factor in the expression $$x^2+2x$$ as shown below:

    $$x^2+2x=x(x+2)$$

    Hence, the factorization of $$x^2+2x$$ is $$x(x+2)$$.
  • Question 9
    1 / -0
    Factorise $$\displaystyle 4m^{3}n^{2}+12m^{2}n^{2}+18m^{4}n^{3}$$
    Solution
    The factorization of $$\displaystyle 4m^{3}n^{2}+12m^{2}n^{2}+18m^{4}n^{3}$$ is
    $$2m^{2}n^{2}(2m+6+9m^{2}n)$$ ....Taking $$2m^2n^2$$ common
  • Question 10
    1 / -0
    Factorise $$10a^2 -15b^2 + 20c^2$$
    Solution
    We have, $$10a^2= 2 \times 5 \times a \times a,$$
    $$15b^2 = 3 \times 5 \times b \times b$$
    and,$$ 20c^2= 2 \times 2 \times 5 \times  c \times c $$
    The three terms have 5 as a common factor
    $$10a^2 - 15b^2+ 20c^2 = (2 \times 5 \times a \times a)-(3 \times 5 \times  b \times b) +(2 \times 2 \times 5\times c \times c)$$ 
    =$$5 \times (2 \times a \times a-3 \times b\times b + 4 \times c \times c) $$
    =$$ 5(2a^2 -3b^2 + 4c^2)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now