Self Studies

Factorisation Test - 17

Result Self Studies

Factorisation Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Factorise : $$5mn+15mnp$$
    Solution
    The common factor between $$5mn$$ and $$15mnp$$ is $$5mn$$ that is the HCF of $$5mn$$ and $$15mnp$$ is $$5mn$$

    Therefore, we take $$5mn$$ as a common factor in the expression $$5mn+15mnp$$ as shown below:

    $$5mn+15mnp=5mn(1+3p)$$

    Hence, the factorization of $$5mn+15mnp$$ is $$5mn(1+3p)$$.
  • Question 2
    1 / -0
    $$\displaystyle (6ab-3abc+9abcd)\div \left( -\frac { 1 }{ 3 } ab \right) $$ is equal to
    Solution
    $$\displaystyle \frac { 6ab-3abc+9abcd }{ -\frac { 1 }{ 3 } ab } $$

    By separating denominators, we get

    $$\displaystyle =\dfrac { 6ab }{ -\frac { 1 }{ 3 } ab } +\frac { \left( -3abc \right)  }{ -\frac { 1 }{ 3 } ab } +\frac { 9abcd }{ -\frac { 1 }{ 3 } ab } $$

    $$\displaystyle =\frac { 6ab }{ ab } \times (-3)+\frac { \left( -3abc \right)  }{ ab } \times (-3)+\frac { \left( 9abcd \right)  }{ ab } \times (-3)$$

    $$\displaystyle =-18+9c-27cd$$
    Hence final value after given operation is $$-18+9c-27cd$$
  • Question 3
    1 / -0
    Factorise : $$6xy^2 + 4x^2y$$ 
    Solution
    The common factor between $$6xy^2$$ and $$4x^2y$$ is $$2xy$$ that is the HCF of $$6xy^2$$ and $$4x^2y$$ is $$2xy$$
    Therefore, we take $$2xy$$ as a common factor in the expression $$6xy^2+4x^2y$$ as shown below:
    $$6xy^2+4x^2y=2xy(2x+3y)$$
    Hence, the factors of $$6xy^2+4x^2y$$ are $$2xy$$ and $$(2x+3y)$$.
  • Question 4
    1 / -0
    Evaluate $$8 (x^3 y^2  z^2 + x^2y^3z^2 + x^2y^2z^3) \div 4x^2y^2z^2$$
    Solution
    $$8(x^3 y^2 z^2 + x^2 y^3 z^2 + x^2 y^2 z^3) \div 4x^2 y^2 z^2$$
    $$= \displaystyle \frac{8 (x^3 y^2 z^2 + z^2 y^3 z^2 + x^2 y^2 z^3)}{4 x^2 y^2 z^2}$$
    $$\displaystyle = \frac{8 \times x^2 y^2 z^2  (x + y + z)}{4 x^2 y^2 z^2} = 2 (x + y + z)$$
  • Question 5
    1 / -0
    Divide:
    $$8x^2y^2-6xy^2 +10x^2y^3$$ by $$2xy$$
    Solution
    $$8x^2y^2-6xy^2 +10x^2y^3 \div 2xy$$
    $$\displaystyle \frac { 8x^{ 2 }y^{ 2 }-6xy^{ 2 }+10x^{ 2 }y^{ 3 } }{ 2xy } $$
    $$=\displaystyle  \frac { 2xy(4xy-6y+10xy^{ 2 }) }{ 2xy } $$
    $$=4xy-3y+5xy^{ 2 }$$

  • Question 6
    1 / -0
    Simplify: $$\displaystyle \left( { 8m }^{ 2 }-9m \right) \div 3m$$
    Solution
    $$\displaystyle \left( { 8m }^{ 2 }-9m \right) \div 3m=\frac { { 8m }^{ 2 }-9m }{ 3m } $$

    $$\displaystyle =\frac { m\left( 8m-9 \right)  }{ 3m } $$

    $$\displaystyle =\frac { 8m-9 }{ 3 } $$

    $$\displaystyle = \frac { 1 }{ 3 } \left( 8m-9 \right) $$
  • Question 7
    1 / -0
    Evaluate: $$\displaystyle \left( { 7a }^{ 2 }-5a \right) \div 5a$$
    Solution
    $$\displaystyle \left( { 7a }^{ 2 }-5a \right) \div 5a=\frac { { 7a }^{ 2 }-5a }{ 5a }$$ 

    =$$\dfrac { a\left( 7a-5 \right)  }{ 5a } =\dfrac { 1 }{ 5 } \left( 7a-5 \right) $$
  • Question 8
    1 / -0
    Evaluate: $$\displaystyle ( 6{ x }^{ 2 }-4x) \div 2x$$
    Solution
    $$\displaystyle \left( 6{ x }^{ 2 }-4x \right) \div 2x=\frac { 6{ x }^{ 2 }-4x }{ 2x } $$

    $$=\dfrac { 2x\left( 3x-2 \right)  }{ 2x } $$

    $$\displaystyle =3x-2$$
  • Question 9
    1 / -0
    Simplify: $$\displaystyle \left( 12a-36 \right) \div 6$$
    Solution
    $$\displaystyle \left( 12a-36 \right) \div 6=\frac { 12a-36 }{ 6 } =\frac { 12\left( a-3 \right)  }{ 6 } $$

    $$\displaystyle =2\left( a-3 \right) $$

    $$\displaystyle =2a-6$$
  • Question 10
    1 / -0
    Evaluate $$(p^3 q^6 -p^6 q^3) \div p^3 q^3$$
    Solution
    $$\begin{aligned}{}\left( {{p^3}{q^6} - {p^6}{q^3}} \right) \div {p^3}{q^3} &= \frac{{{p^3}{q^6} - {p^6}{q^3}}}{{{p^3}{q^3}}}\\ &= \frac{{{p^3}{q^3}\left( {{q^3} - {p^3}} \right)}}{{{p^3}{q^3}}}\\& = {q^3} - {p^3}\end{aligned}$$

    Hence, option $$B$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now