Self Studies

Factorisation Test - 19

Result Self Studies

Factorisation Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the value of $$\displaystyle \left( { 3x }^{ 3 }+{ 2x }^{ 2 }+x \right) \div 4x$$
    Solution
    $$\displaystyle \left( { 3x }^{ 3 }+{ 2x }^{ 2 }+x \right) \div 4x=\frac { { 3x }^{ 3 }+{ 2x }^{ 2 }+x }{ 4x } $$

    $$\displaystyle =\frac { x\left( { 3x }^{ 2 }+2x+1 \right)  }{ 4x } $$

    $$\displaystyle =\frac { 1 }{ 4 } \left( { 3x }^{ 2 }+2x+1 \right) $$
  • Question 2
    1 / -0
    Find the value of $$\displaystyle \left( { 7a }^{ 6 }-8{ a }^{ 5 }+9{ a }^{ 4 } \right) \div { a }^{ 3 }$$
    Solution
    $$\displaystyle \left( { 7a }^{ 6 }-8{ a }^{ 5 }+9{ a }^{ 4 } \right) \div { a }^{ 3 }=\frac { { 7a }^{ 6 }-8{ a }^{ 5 }+9{ a }^{ 4 } }{ { a }^{ 3 } } $$

    $$\displaystyle =\frac { { a }^{ 3 }\left( { 7a }^{ 3 }-{ 8a }^{ 2 }+9a \right)  }{ { a }^{ 3 } } $$

    $$\displaystyle = { 7a }^{ 3 }-{ 8a }^{ 2 }+9a$$
  • Question 3
    1 / -0
    Solve: $$\displaystyle 3{ x }^{ 3 }-15{ x }^{ 2 }+21x\div 3x$$
    Solution
    $$\displaystyle 3{ x }^{ 3 }-15{ x }^{ 2 }+21x\div 3x$$

    $$\displaystyle = \frac { 3{ x }^{ 3 } }{ 3x } -\frac { 15{ x }^{ 2 } }{ 3x } +\frac { 21x }{ 3x } $$

    $$\displaystyle ={ x }^{ 2 }-5x+7$$
  • Question 4
    1 / -0
    Simplify: $$\displaystyle \left( 16{ x }^{ 3 }{ y }^{ 2 }{ z }^{ 2 }+16{ x }^{ 2 }{ y }^{ 2 }{ z }^{ 3 }+16{ x }^{ 2 }{ y }^{ 3 }{ z }^{ 2 } \right) \div 8xyz$$
    Solution
    Given, $$\displaystyle \left( 16{ x }^{ 3 }{ y }^{ 2 }{ z }^{ 2 }+16{ x }^{ 2 }{ y }^{ 2 }{ z }^{ 3 }+16{ x }^{ 2 }{ y }^{ 3 }{ z }^{ 2 } \right) \div 8xyz$$

    $$\displaystyle =\frac { 16{ x }^{ 3 }{ y }^{ 2 }{ z }^{ 2 }+16{ x }^{ 2 }{ y }^{ 2 }{ z }^{ 3 }+16{ x }^{ 2 }{ y }^{ 3 }{ z }^{ 2 } }{ 8xyz } $$

    $$\displaystyle =\frac { 8xyz\left( 2{ x }^{ 2 }yz+2xy{ z }^{ 2 }+2x{ y }^{ 2 }z \right)  }{ 8xyz } $$

    $$\displaystyle =2{ x }^{ 2 }yz+2xy{ z }^{ 2 }+2x{ y }^{ 2 }z$$
  • Question 5
    1 / -0
    Divide $$\displaystyle (2x+12)$$ by $$\displaystyle (4x+24)$$
    Solution
    $$\displaystyle \left( 2x+12 \right) \div \left( 4x+24 \right) =\frac { 2x+12 }{ 4x+24 } $$

    $$=\dfrac { 2\left( x+6 \right)  }{ 4\left( x+6 \right)  } =\dfrac { 1 }{ 2 } $$
  • Question 6
    1 / -0
    Simplify: $$\displaystyle \left( { a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 }-{ a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 }+{ a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 } \right) \div { a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 }$$
    Solution
    $$\displaystyle \left( { a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 }-{ a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 }+{ a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 } \right) \div { a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 }$$

    $$\displaystyle =\frac { { a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 }-{ a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 }+{ a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 } }{ { a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 } } $$

    $$= \dfrac {0 + a^2b^2c^3}{a^2b^2c^3}$$

    $$\displaystyle =\frac { { a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 } }{ { a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 } } =1$$
  • Question 7
    1 / -0
    Which of the following statement is correct?
    Solution
    $$\displaystyle \left( { x }^{ 2 }-2xy \right) \div x$$

    $$=\dfrac { { x }^{ 2 }-2xy }{ x } =\dfrac { x\left( x-2y \right)  }{ x } $$

    $$=\left( x-2y \right) $$

    $$\displaystyle \therefore \left( { x }^{ 2 }-2xy \right) \div x=\left( x-2y \right) $$ is a correct statement.
  • Question 8
    1 / -0
    Simplify: $$\displaystyle \frac { 36ab\left( a+2 \right) \left( a+3 \right)  }{ 12a\left( a+3 \right)  } $$
    Solution
    $$\displaystyle \frac { 36ab\left( a+2 \right) \left( a+3 \right)  }{ 12a\left( a+3 \right)  } =\frac { 3b\left( a+2 \right)  }{ 1 } =3b\left( a+2 \right) $$
  • Question 9
    1 / -0
    The value of $$(\displaystyle 9{ x }^{ 2 }+18x+27) \div 9$$ is equal to
    Solution
    $$(\displaystyle 9{ x }^{ 2 }+18x+27) \div 9 =\frac { 9{ x }^{ 2 }+18x+27 }{ 9 } $$

    $$\displaystyle =\frac { 9\left( { x }^{ 2 }+2x+3 \right)  }{ 9 } $$

    $$\displaystyle = { x }^{ 2 }+2x+3$$
  • Question 10
    1 / -0
    Divide $$\displaystyle ( 36{ x }^{ 2 }-4 )$$ by $$\left( 6x-2 \right) $$
    Solution
    $$\displaystyle \left( 36{ x }^{ 2 }-4 \right) \div \left( 6x-2 \right) =\frac { 36{ x }^{ 2 }-4 }{ 6x-2 } $$

    $$\displaystyle =\frac { { \left( 6x \right)  }^{ 2 }-{ \left( 2 \right)  }^{ 2 } }{ \left( 6x-2 \right)  } =\frac { \left( 6x-2 \right) \left( 6x+2 \right)  }{ \left( 6x-2 \right)  } $$

    $$\displaystyle =6x+2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now