Self Studies

Factorisation Test - 20

Result Self Studies

Factorisation Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following is incorrect?
    Solution
    $$\displaystyle \left( { a }^{ 2 }bc+a{ b }^{ 2 }c+ab{ c }^{ 2 }+abc \right) \div abc=\frac { { a }^{ 2 }bc+a{ b }^{ 2 }c+ab{ c }^{ 2 }+abc }{ abc } $$

    $$\displaystyle =\frac { abc\left( a+b+c+1 \right)  }{ abc } =a+b+c+1$$

    $$\displaystyle \therefore \left( { a }^{ 2 }bc+a{ b }^{ 2 }c+ab{ c }^{ 2 }+abc \right) \div abc$$ is an incorrect statement.
  • Question 2
    1 / -0
    Which of the following statements is correct?
    Solution
    $$\displaystyle \left( 6{ x }^{ 2 }+12 \right) \div 6=\frac { 6{ x }^{ 2 }+12 }{ 6 }$$ 

    $$=\dfrac { 6\left( { x }^{ 2 }+2 \right)  }{ 6 } ={ x }^{ 2 }+2$$

    $$\displaystyle \therefore \left( 6{ x }^{ 2 }+12 \right) \div 6$$ is a correct statement.
  • Question 3
    1 / -0
    The value of $$\displaystyle \frac { 28xy\left( y-5 \right) \left( y+4 \right)  }{ 14y\left( y-5 \right)}$$ is 
  • Question 4
    1 / -0
    Factorise : $$\displaystyle 40{ m }^{ 2 }n+50mn$$
    Solution
    $$\displaystyle 40{ m }^{ 2 }n+50mn=\left( 2\times 5\times 2\times 2\times m\times m\times n \right) +\left( 2\times 5\times 5\times m\times n \right) $$
                                 $$\displaystyle =10mn\left( 4m+5 \right) $$
  • Question 5
    1 / -0
    Simplify: $$\displaystyle \frac { 20xyz\left( 4x+5y+6z \right)  }{ xz\left( 40x+50y+60z \right)}$$
    Solution
    $$\displaystyle \frac { 20xyz\left( 4x+5y+6z \right)  }{ xz\left( 40x+50y+60z \right)  } =\frac { 20y\left( 4x+5y+6z \right)  }{ 10\left( 4x+5y+6z \right)  } =2y$$
  • Question 6
    1 / -0
    Factorisation of the expression $$\displaystyle 6p-24q$$ results in :
    Solution
    $$\displaystyle 6p-24q=\left( 6\times p \right) -\left( 24\times q \right) $$
                    $$=\left( 6\times p \right) -\left( 6\times 4\times q \right) $$
                    $$=6\left( p-4q \right) $$
  • Question 7
    1 / -0
    Evaluate: $$\displaystyle \frac { 35\left( x-3 \right) \left( { x }^{ 2 }+2x+4 \right)  }{ 7\left( x-3 \right)  } $$
    Solution
    $$\displaystyle \frac { 35\left( x-3 \right) \left( { x }^{ 2 }+2x+4 \right)  }{ 7\left( x-3 \right)  } =5( { x }^{ 2 }+2x+4) $$
  • Question 8
    1 / -0
    Divide $$\displaystyle 10{ a }^{ 2 }{ b }^{ 2 }\left( 5x-25 \right)$$ by $$15ab\left( x-5 \right) $$
    Solution
    $$\displaystyle 10{ a }^{ 2 }{ b }^{ 2 }\left( 5x-25 \right) \div 15ab\left( x-5 \right) $$

    $$\displaystyle =\frac { 10{ a }^{ 2 }{ b }^{ 2 }\left( 5x-25 \right)  }{ 15ab\left( x-5 \right)  } $$

    $$\displaystyle =\frac { 2ab\times 5\left( x-5 \right)  }{ 3\left( x-5 \right)  } =\frac { 10ab }{ 3 } $$
  • Question 9
    1 / -0
    Divide $$\displaystyle 4{ x }^{ 2 }{ y }^{ 2 }\left( 6x-24 \right) \div 4xy\left( x-4 \right) $$
    Solution
    $$\displaystyle 4{ x }^{ 2 }{ y }^{ 2 }\left( 6x-24 \right) \div 4xy\left( x-4 \right) $$

    $$\displaystyle =\frac { 4{ x }^{ 2 }{ y }^{ 2 }\left( 6x-24 \right)  }{ 4xy\left( x-4 \right)  } =\frac { xy\times 6\left( x-4 \right)  }{ \left( x-4 \right)  } $$

    $$\displaystyle =6xy$$
  • Question 10
    1 / -0
    Simplify: $$\displaystyle \frac { 4-x }{ 4x-16 }$$
    Solution
    $$\displaystyle \frac { 4-x }{ 4x-16 } =\frac { -\left( x-4 \right)  }{ 4\left( x-4 \right)  } =\frac { -1 }{ 4 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now