Self Studies

Factorisation Test - 21

Result Self Studies

Factorisation Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Divide $$\displaystyle \left( 24x-42 \right)$$ by $$\left( 4x-7 \right) $$
    Solution
    $$\displaystyle \left( 24x-42 \right) \div \left( 4x-7 \right) =\frac { 24x-42 }{ 4x-7 } $$

    $$\displaystyle =\frac { 6\left( 4x-7 \right)  }{ 4x-7 } =6$$
  • Question 2
    1 / -0
    Factorise: $$\displaystyle 13{ x }^{ 2 }y-65x{ y }^{ 2 }$$
    Solution
    $$\displaystyle 13{ x }^{ 2 }y-65x{ y }^{ 2 }=\left( 13\times x\times x\times y \right) -\left( 13\times y\times x\times y\times y \right) \\ $$
                                $$\displaystyle =13xy\left( x-5y \right) $$
  • Question 3
    1 / -0
    Factorisation of the expression $$\displaystyle -15x+5{ x }^{ 3 }$$ gives result as
    Solution
    $$\displaystyle -15x+5{ x }^{ 3 }=\left( -5\times 3\times x \right) +\left( 5\times x\times x\times x \right) $$
                          $$\displaystyle = -5x( 3-{ x }^{ 2 }) $$
                          $$\displaystyle = 5x ( { x }^{ 2 }-3) $$
  • Question 4
    1 / -0
    Find the factors of $$3x^{2} - 3x - 90$$.
    Solution
    Given: $$3x^{2} - 3x - 90$$
    $$= 3(x^{2} - x - 30)$$              {Taking $$3$$ as common}
    $$=3 (x^{2} - 6x + 5x - 30)$$
    $$= 3 (x (x -6) + 5 (x - 6))$$
    $$= 3(x - 6)(x + 5)$$
  • Question 5
    1 / -0
    Factorise: $$\displaystyle 5xy+15y$$
    Solution
    $$\displaystyle 5xy+15y=\left( 5\times x\times y \right) +\left( 5\times 3\times y \right) $$

                       $$\displaystyle =5y\left( x+3 \right) $$
  • Question 6
    1 / -0
    Factorisation of the expression $$\displaystyle { x }^{ 4 }yz+x{ y }^{ 4 }z+xy{ z }^{ 4 }$$ results in:
    Solution
    $$\displaystyle { x }^{ 4 }yz+x{ y }^{ 4 }z+xy{ z }^{ 4 }$$

    $$=\displaystyle xyz( { x }^{ 3 }+{ y }^{ 3 }+{ z }^{ 3 } ) $$
  • Question 7
    1 / -0
    Factorisation of the expression : $$\displaystyle -2{ x }^{ 2 }{ y }^{ 3 }+6{ x }^{ 3 }{ y }^{ 2 }-8{ x }^{ 2 }{ y }^{ 2 }$$ results in :
    Solution
    $$\displaystyle -2{ x }^{ 2 }{ y }^{ 3 }+6{ x }^{ 3 }{ y }^{ 2 }-8{ x }^{ 2 }{ y }^{ 2 }$$

    $$\displaystyle =\left[ (-2)\times { x }^{ 2 }\times { y }^{ 2 }\times y \right] +\left[ (-2) \times (-3)\times { x }^{ 2 }\times x\times { y }^{ 2 } \right] +\left[(-2) \times 4 \times { x }^{ 2 }\times { y }^{ 2 }\right]$$

    $$\displaystyle =-2{ x }^{ 2 }{ y }^{ 2 }\left( y-3x+4 \right) $$

    $$\displaystyle =-2{ x }^{ 2 }{ y }^{ 2 }\left( y-3x-4 \right) $$
  • Question 8
    1 / -0
    Factorise: $$\displaystyle -6{ a }^{ 2 }+6cb-6ca$$
    Solution
    $$ -6{ a }^{ 2 }+6cb-6ca=\left( -6\times a\times a \right) +\left( 6\times c\times b \right) -\left( 6\times c\times a \right) $$
                                    
                                    $$\displaystyle =-6( { a }^{ 2 }-cb+ca) $$
  • Question 9
    1 / -0
    Factorise : $$\displaystyle 12{ x }^{ 2 }-24{ y }^{ 2 }+36{ z }^{ 2 }$$
    Solution
    $$\displaystyle 12{ x }^{ 2 }-24{ y }^{ 2 }+36{ z }^{ 2 }=12x^2 - 12\times 2y^2 + 12\times 3z^2$$

                                        $$=12\left( { x }^{ 2 }-2{ y }^{ 2 }+3{ z }^{ 2 } \right) $$
  • Question 10
    1 / -0
    Factorisation of the expression : $$\displaystyle 7{ a }^{ 2 }-49{ b }^{ 2 }$$
    Solution
    $$\displaystyle 7{ a }^{ 2 }-49{ b }^{ 2 }=( 7\times a\times a) -( 7\times 7\times b\times b ) $$

                        $$\displaystyle = 7( { a }^{ 2 }-7{ b }^{ 2 } ) $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now