Self Studies

Factorisation Test - 23

Result Self Studies

Factorisation Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Directions For Questions

    Divide the given polynomial by the given monomial.

    ...view full instructions

    $$(5a^3 b - 7ab^3) \div ab$$
    Solution
    We divide the given polynomial $$5a^3b-7ab^3$$ by the monomial $$ab$$ as shown below:

    $$\dfrac { 5a^{ 3 }b-7ab^{ 3 } }{ ab } \\ =\dfrac { 5a^{ 3 }b }{ ab } -\dfrac { 7ab^{ 3 } }{ ab } \\ =\dfrac { 5a^{ 3 }b }{ ab } -\dfrac { 7ab^{ 3 } }{ ab } \\ =\dfrac { 5\times a\times a\times a\times b }{ a\times b } -\dfrac { 7\times a\times b\times b\times b }{ a\times b } \\ =5a^{ 2 }-7b^{ 2 }$$

    Hence, $$\dfrac { 5a^{ 3 }b-7ab^{ 3 } }{ ab } =5a^{ 2 }-7b^{ 2 }$$.
  • Question 2
    1 / -0
    Divide the given polynomial by the given monomial:

    $$\left(\dfrac{2}{3} a^2 b^2 c^2 + \dfrac{4}{3} ab^2 c^2 \right ) \div \dfrac{1}{2} abc$$
    Solution
    We divide the given polynomial $$\dfrac { 2 }{ 3 } a^{ 2 }b^{ 2 }c^{ 2 }+\dfrac { 4 }{ 3 } ab^{ 2 }c^{ 2 }$$ by the monomial $$\dfrac { 1 }{ 2 } abc$$ as shown below:

    $$\dfrac { \dfrac { 2 }{ 3 } a^{ 2 }b^{ 2 }c^{ 2 }+\dfrac { 4 }{ 3 } ab^{ 2 }c^{ 2 } }{ \dfrac { 1 }{ 2 } abc } \\ =\dfrac { \dfrac { 2 }{ 3 } a^{ 2 }b^{ 2 }c^{ 2 } }{ \dfrac { 1 }{ 2 } abc } +\dfrac { \dfrac { 4 }{ 3 } ab^{ 2 }c^{ 2 } }{ \dfrac { 1 }{ 2 } abc }$$
    $$=\dfrac { \dfrac { 2 }{ 3 } \times a\times a\times b\times b\times c\times c }{ \dfrac { 1 }{ 2 } \times a\times b\times c } +\dfrac { \dfrac { 4 }{ 3 } \times a\times b\times b\times c\times c }{ \dfrac { 1 }{ 2 } \times a\times b\times c } \\ =\left( \dfrac { 2 }{ 3 } \times 2\times a\times b\times c \right) +\left( \dfrac { 4 }{ 3 } \times 2\times b\times c \right) \\ =\dfrac { 4 }{ 3 } abc +\dfrac { 8 }{ 3 } bc \\ =\dfrac { 4 }{ 3 } (abc+2bc)$$

    Hence, $$\dfrac { \dfrac { 2 }{ 3 } a^{ 2 }b^{ 2 }c^{ 2 }+\dfrac { 4 }{ 3 } ab^{ 2 }c^{ 2 } }{ \dfrac { 1 }{ 2 } abc } =\dfrac { 4 }{ 3 } (abc+2bc)$$.
  • Question 3
    1 / -0

    Directions For Questions

    Divide the given polynomial by the given monomial.

    ...view full instructions

    $$(25x^5 - 15x^4) \div 5x^3$$
    Solution
    We divide the given polynomial $$25x^5-15x^4$$ by the monomial $$5x^3$$ as shown below:

    $$\dfrac { 25x^{ 5 }-15x^{ 4 } }{ 5x^{ 3 } } \\ =\dfrac { 25x^{ 5 } }{ 5x^{ 3 } } -\dfrac { 15x^{ 4 } }{ 5x^{ 3 } } \\ =\left( \dfrac { 5\times 5\times x^{ 5 } }{ 5x^{ 3 } }  \right) -\left( \dfrac { 3\times 5\times x^{ 4 } }{ 5x^{ 3 } }  \right) \\ =\left( \dfrac { 5\times x^{ 5 }\times x^{ -3 } }{ 1 }  \right) -\left( \dfrac { 3\times x^{ 4 }\times x^{ -3 } }{ 1 }  \right)$$
    $$=(5\times x^{ (5-3) })-(3\times x^{ (4-3) })\quad \quad \quad \quad \quad \quad \left( \because \quad a^{ x }+a^{ y }=a^{ x+y } \right) \\ =5x^{ 2 }-3x\\ =x(5x-3)$$ 

    Hence, $$\dfrac { 25x^{ 5 }-15x^{ 4 } }{ 5x^{ 3 } } =x(5x-3)$$.
  • Question 4
    1 / -0
    Factorize the following
    $$pq - pr - 3ps$$
    Solution
    $$pq-pr-3ps$$ 

    (To factorise means to make factor)
     
    Taking $$p$$ common from all $$3$$ equations, we have
     
    $$p(q-r-3s)$$
  • Question 5
    1 / -0
    Factorise the expression:
    $$2a^3 - 3a^2 b + 2a^2 c$$
    Solution
    $$2a^{3}-3a^{2}b+2a^{2}c$$

    Taking $$a^{2}$$ common from all $$3$$ terms

    $$=a^{2}(2a-3b+2c)$$
  • Question 6
    1 / -0
    Factorize the following expression
    $$16x + 64x^2 y$$
    Solution
    $$16x+64x^{2}y$$

    $$=16x+4\times (16x)(xy)$$

    Taking $$16x$$ common 

    $$=16x(1+4xy)$$
  • Question 7
    1 / -0
    Factorize the following expression:
    $$10x^3 - 25 x^4 y$$
    Solution
    Taking  $$5x^{3}$$ common from all the terms

    $$5x^{3}(2-5xy)$$
  • Question 8
    1 / -0
    Find the quotient and remainder of the given expression,
    $$(3x^3+4x^2-5)\div (3x+1)$$
    Solution

  • Question 9
    1 / -0
    Find the quotient and remainder of the given expression, $$(3x^3+2x^2+7x-5)\div (x+3)$$
    Solution

    We divide $$3x^3+2x^2+7x-5$$ by $$(x+3)$$ as shown in the above image:

    From the division, we observe that the quotient is $$3x^2-7x+28$$ and the remainder is $$-89$$.

    Hence, the quotient is $$3x^2-7x+28$$ and the remainder is $$-89$$.

  • Question 10
    1 / -0
    Find the quotient and remainder of the given expression,
    $$(8x^4-2x^2+6x-5)\div (4x+1)$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now