Self Studies

Factorisation Test - 8

Result Self Studies

Factorisation Test - 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The zero of  x+2 is

    Solution

    zero means root x + 2 = 0   ⇒ x = −2.

  • Question 2
    1 / -0

    The expanded form of  (x +  y)(x − y)  is a

    Solution

    (x + y)(x − y) x2 − y2 = A binomial.

  • Question 3
    1 / -0

    Find the degree of (x2 − x)2

    Solution

     (x2 − x)2 By physical inspection and mental calculation, we can see that highest term will be =x4 = 4 ⇒ degree = 4, ALITER, by actual calculation (x2 − x)2 = [x(x − 1)]2 

    =x2(x − 1)2 x2(x2 − 2x + 1)             x4 − 2x3 + x2 So we get, →x4 as highest term ⇒ Degree = 4.

  • Question 4
    1 / -0

    If a=2,b=1 then a2 + b2 + 2ab =

    Solution

     Just put the value of 'a' & 'b' Or Write a2 + b2 + 2ab = (a + b)2 Now put a = 2, b = 1 = (2 + 1)2 = 9.  

  • Question 5
    1 / -0

    (x + a)(x − b) is given by

    Solution

    Multiply (x + a)(x − b) term by term =(x + a)x + (x + a)(−b) = x2 + ax − bx − ab = x2 + (a − b)x − ab.

  • Question 6
    1 / -0

    Factorize the expression given by 18x3y3 − 27x2y3 + 36x3y2

    Solution

    Inspection shows that 9x2yis common factor: 9x2y2 {2xy − 3y + 4x} Further factors are not possible.

  • Question 7
    1 / -0

    Factorize the given expression  mn(u2 + v2) − uv(m2 + n2)

    Solution

    mn(u2 − v2) − uv(m2 + n2) = u2mn + v2mn = − uvm2 − uvn2 = un(um − vn) + vm(vn − um)  = un(um − vn) − vm(um − un) = (un −  vm)(um − vn).

  • Question 8
    1 / -0

    Factorize (p + q)(2p + 5) − (p + q)(p + 3)

    Solution

    Taking (p+q) factors as common,(p + q){2p + 5 − (p + 3)}  = (P + q{p + 2}.

  • Question 9
    1 / -0

     The value of (x − y)(x + y)(x2 + y2){(x2 + y2)2 −2x2y2} is

    Solution

    (x − y)(x + y)(x2 + y2){(x2 + y2) − 2x2y2} Combining from left in bunches of two factors each, (x − y)(x + y) = x2 − y2 Then (x2 − y2)(x2 + y2) = x4 − y4 Then, (x4 − y4)(x4 + y4) =

    x8 − y8 [since{(x2 + y2)2 − 2x2y2} = x4 + y4].

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now